QL Assembly Language Mailing List

Issue 10

Norman Dunbar

PUBLISHED BY MEMYSELFEYE PUBLISHING ;-)

Download from:
https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/releases/tag/Issue_
10

Licence:

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

This pdf document was created on 29/1/2022 at 16:57:02.
Copyright ©2021-2022 Norman Dunbar

https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/releases/tag/Issue_10
https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/releases/tag/Issue_10
http://creativecommons.org/licenses/by-nc/3.0

\ L“L-ef'f S Aoy, e

el 5
LT
Fios T c:ﬂ B s 1.:*“'."- "JJ l-:'

Preface
1.1 Feedback 9
1.2 Subscribing to The Mailing List 9
1.3 Contacting The Mailing List 10

News
2.1 New Cover 11
2.2 My Assembly Book 11
23 Beginner’s Corner 12
24 SMSQ/E 12
241 SMSQ/E 3. 88 . . 12
25 QPC2 Version 5.01 12
2.6 Code Listings 13
2.7 AndFinally... 13

Feedback

3.1 Circular Buffers 15

3.2
3.3
34

3.5

3.5.1
3.5.2

4.1

4.2
4.2.1
422
423
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
429
4.2.10
4.2.11
4212
4.2.13

4.3
4.4

5.1

6.1
6.1.1

6.2

Learning Assembly Language
Wolfgang’s Feedback on Label Alignment
Wolfgang’s Comments on Q12Win_asm

Bug Fixes for QI2Win/Win2q|
Q2N o e

Beginners’ Corner
Introduction

Do Basic Things

Program Constants
JoOb Header
Opening a Console Channel i e
Do We Have the Pointer Environment? i
Pointer Environment Found
ClearSCreen
Print O Prompt ..

Enable the Cursor o

Assembling the Code

Summary

Quickie Corner

Speedy Stuff

Free Pascal Compiler
Writing Code
Parameter POSSINGo

Join In If You Can

15
16
19

21

21
23

37

40
41

42

7.1
7.1.1
7.1.2
7.2

7.2.1
7.2.2

8.1

8.1.1
8.1.2

Heaps

Common Heap

Unsigned Peeks

PEEK_UW and PEEK_UL

QDOS Conversion of LongtoFloat
QL Floating PoiNt VaIUESo e

Image Credits

44
45
47
47

48
52

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
6.1
6.2
7.1
7.2
7.3
7.4
7.5
7.6

@
-

e

WAL o

PEALIG oLy N

-
% L % A
LR T T ,f £ O ETINN AL

Tinyfpga - Constant Definitions, 26
Tinyfpga-JobHeader 27
Tinyfpga-OpenaConsole e 28
Tinyfpga - Check for Pointer Environment 29
Tinyfpga - Pointer Environment Present, 30
Tinyfpga - Clearthe Screen 30
Tinyfpga-PrintaPrompt 31
Tinyfpga - Enable aCursor 31
Tinyfpga - Request Input L 32
Tinyfpga - Printing the Input L oL 33
Tinyfpga - Delay Before Ending 33
Tinyfpga - DeathofalJob L 34
FPC FileOpen function e e 40
FPClo_openfunction i i 40
Common Heap Allocation Example 45
User Heap Creation Example 49
User Heap Allocation i e 51
User Heap Deallocation i ittt e 51
User Heap Vectors Example 52

User Heap Total Deallocation 54

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

Unsigned Peeks - Equates 58

Unsigned Peeks - Linking into S*BASIC 58
Unsigned Peeks - Procedure/Function definition block 58
Unsigned Peeks -Peek_uw 59
Unsigned Peeks - Peek_ul L 59
Unsigned Peeks - Fetching one parameter 59
Unsigned Peeks - Testing parameters fetched 60
Unsigned Peeks - Getting the address, and peekingit 60
Unsigned Peeks - Fixup for PEEK_UW 60
Unsigned Peeks - Floating a Long SMSQ/E style 60
Unsigned Peeks - Testing for negativity 61
Unsigned Peeks - Adjusting for negativity 61
Unsigned Peeks - Return to S*BASIC 61
Unsigned Peeks - Allocating maths stack space 62
Unsigned Peeks - Execute maths package operation 62
Unsigned Peeks - QDOS Making stack space 63

Unsigned Peeks - QDOS Converting LongtoFloat 63

1.1

1.2

- Pz b
_.'.!".i" (P T | 5,
‘u'}’?r‘.::.‘"‘.' "'.
v i

P B g S

Feedback

Please send all feedback to assembly@qdosmsq.dunbar-it.co.uk. You may also send articles
to this address, however, please note that anything sent to this email address may be used in a future
issue of the eMagazine. Please mark your email clearly if you do not wish this to happen.

This eMagazine is created in I&[[EXsource format, aka plain text with a few formatting commands
thrown in for good measure, so I can cope with almost any format you might want to send me. As
long as I can get plain text out of it, I can convert it to a suitable source format with reasonable ease.

I use a Linux system to generate this eMagazine so I can read most, if not all, Word or MS Office
documents, Quill, Plain text, email etc formats. Text87 might be a problem though!

Subscribing to The Mailing List

This eMagazine is available by subscribing to the mailing list. You do this by sending your
favourite browser to http://qdosmsqg.dunbar-it.co.uk/mailinglist and clicking on the
link “Subscribe to our Newsletters”.

On the next screen, you are invited to enter your email address twice, and your name. If you wish
to receive emails from the mailing list in HTML format then tick the box that offers you that option.
Click the Subscribe button.

An email will be sent to you with a link that you must click on to confirm your subscription. Once
done, that is all you need to do. The rest is up to me!

assembly@qdosmsq.dunbar-it.co.uk
http://qdosmsq.dunbar-it.co.uk/mailinglist

1.3

10 Chapter 1. Preface

Contacting The Mailing List

I’m rather hoping that this mailing list will not be a one-way affair, like QL Today appeared to be.
I’'m very open to suggestions, opinions, articles etc from my readers, otherwise how do I know
what I'm doing is right or wrong?

I suspect George will continue to keep me correct on matters where I get stuff completely wrong, as
before, and I know George did ask if the list would be contactable, so I've set up an email address
for the list, so that you can make comments etc as you wish. The email address is:

assembly@qdosmsq.dunbar-it.co.uk

Any emails sent there will eventually find me. Please note, anything sent to that email address will
be considered for publication, so I would appreciate your name at the very least if you intend to
send something. If you do not wish your email to be considered for publication, please mark it
clearly as such, thanks. I look forward to hearing from you all, from time to time.

If you do have an article to contribute, I’ll happily accept it in almost any format - email, text, Word,
Libre/Open Office odt, Quill, PC Quill, etc etc. Ideally, a I&IEXsource document is the best format,
because I can simply include those directly, but I doubt I'll be getting many of those! But not to
worry, if you have something, I’'ll hopefully manage to include it.

assembly@qdosmsq.dunbar-it.co.uk

2.1

2.2

_u'r* 4 i/./,l:‘-"'[by e
- o i 3 T l a
I B A AL

New Cover

I had a note on the QL Forum that some people' get a bit weird in the head when they look at the
cover image for this eMagazine. It’s got something to do with all the holes, or the appearance of
same, so rather than losing any of my valued readers, I’ve decided to get a new cover image with
far fewer holes!

It may sound amusing, but Trypophobia? is a known phobia, so holes are best avoided if you are
a sufferer. Hopefully the new cover will prevent any induced weirdness in my reader(s). There’s
enough weirdness in the author!

My Assembly Book

In the last issue, I mentioned that Tinyfpga had created a printed version of my Assembly Language
articles from the late, and much missed, QL Today magazine. Since then, Tiny (if I can call him
that!) has posted a couple of updates on the book to the QL Forum at this post® and this post too®.

It appears that everyone who purchases a copy gets to see the personal details of the previous
customer, which means potentially falling foul of EU GDPR rules and regulations for personal data.
There is a fix to the problem, but if anyone has a better idea, please do post the details on the forum
in response to the two posts linked above. Thanks.

1 Ok, one person!

Zhttps://en.wikipedia.org/wiki/Trypophobia

3 https://qlforum.co.uk/viewtopic.php?7f=3&t=3976&start=10#p44445
4https://qlforum.co.uk/viewtopic.php M=3&t=3976&start=10#p44446

https://en.wikipedia.org/wiki/Trypophobia
https://qlforum.co.uk/viewtopic.php?f=3&t=3976&start=10#p44445
https://qlforum.co.uk/viewtopic.php?f=3&t=3976&start=10#p44446

2.3

24

2.4.1

2.5

12 Chapter 2. News

Beginner’s Corner

This issue sees the start of a new feature, which will take a look at Assembly Language programming
from a beginner’s point of view. I don’t mean getting right back to basics and learning the
instructions etc — that’s nicely covered in the book mentioned above, or the PDF version which you
can download from my GitHub repository?.

What I do mean is a beginner’s guide to Assembly Language Tools — which assembler to use, what
about debuggers etc, plus, it occurs to me that I never delved into QDOS and the various utilities
and traps in my articles for QL Today! So that’s where we will be going in the future.

SMSQ/E

And speaking of delving into QDOS, this issue marks the end of an era. QDOS is no more, long
live SMSQ/E! From now on, I will be converting myself over to using the SMSQ/E versions of
trap calls and vectors etc. I feel, after some discussion on the forum, that anyone learning this stuff
nowadays — and there are still some — should be using the up to date details. So, no more using
UT_CON as I'll be using OPW_CON instead!

For those who need a new manual to cover this new regime, the QDOS/SMS Reference Manual is
available from the Sinclair QL. Home Page® where you can grab a PDF version’ or a Libre Office
version® (ODT) as desired.

SMSQ/E 3.38

A new version of SMSQ/E is now available. Version 3.38 was announced on 1st November on the
QL Forums? and on the QL emailing list. To quote Wolfgang Lenerz:

SMSQE 3.38 is out now.
As usual, you can get it at http://www.wlenerz.com/smsqe/.

The main news here is that, thanks to Alain Haoui’s work, WMAN can now draw real subwindow
indices.

The ways this is done is explained in the QPTR manual, the new version of which can be found at
my QL stuff site http://www.wlenerz.com/qlstuff.

There you can find the QPTR manual (in the documentation section), and also the new QPTR
bin file itself, which also implements index drawing (in the programming section) as well as two
demof/test programs (one for Basic, made by Alain. Haoui, and one for assembler).

QPC2 Version 5.01

Coincidentally with the new release of SMSQ/E, Marcel Kilgus announced the release of QPC2
v5.01 on 1st November 2021. In his own words':

Shttps://github.com/NormanDunbar/QLAssemblyLanguageBook/releases/latest
Shttp://www.dilwyn.me.uk/docs/manuals/index.html
http://www.dilwyn.me.uk/docs/manuals/QDOS_SMS%20Reference%20Guide%20v4.5.pdf
8http://www.dilwyn.me.uk/docs/manuals/QDOS_SMS%20Reference%20Guide%20v4.5.odt
https://qlforum.co.uk/viewtopic.php?f=38&t=3957&p=44189+#p44189
Ohttps://qlforum.co.uk/viewtopic.php?f=19&t=3958#p44190

https://github.com/NormanDunbar/QLAssemblyLanguageBook/releases/latest
http://www.dilwyn.me.uk/docs/manuals/index.html
http://www.dilwyn.me.uk/docs/manuals/QDOS_SMS%20Reference%20Guide%20v4.5.pdf
http://www.dilwyn.me.uk/docs/manuals/QDOS_SMS%20Reference%20Guide%20v4.5.odt
http://www.dilwyn.me.uk/docs/manuals/QDOS_SMS%20Reference%20Guide%20v4.5.odt
https://qlforum.co.uk/viewtopic.php?f=3&t=3957&p=44189#p44189
http://www.wlenerz.com/smsqe/
http://www.wlenerz.com/qlstuff
https://qlforum.co.uk/viewtopic.php?f=19&t=3958#p44190

2.6

2.7

2.6 Code Listings 13

Rejoice, QPC2 got a new release today. As always free as in "free beer". Details are here:
https:/fwww.kilgus.net/2021/11/01/gpc2-v5-01-and-smsq-e-v3-38-released/

And, yes, I know. The chances of a newer release of QPC and/or SMSQ/E appearing before this
issue of the eMagazine are pretty high!

Code Listings

I’m using a different manner of including listings in the eMagazine. From this issue onwards, the
vast majority of code will be taken directly from the source files and not copied and pasted as I
have been doing. This way, I should reduce the number of errors I make when copying and pasting
— or forgetting to! Basically, from here on in, the errors anyone finds will be all my own fault!

I’m also not including the bigger comments in the source code, but the source files will still have
them present. There’s no point having the text explaining things that the source comments are also
explaining.

Not all this issue’s listings have been converted over.

And Finally...

Apologies for the seemingly never ending list of URLSs in the footnotes to the pages in this section.
This is mainly done for the reason that some people actually prefer a printed version of my
eMagazine and it appears that there’s a bug in the handling of clickable links on the paper versions —
they simply don’t work.

https://www.kilgus.net/2021/11/01/qpc2-v5-01-and-smsq-e-v3-38-released/

3.1

- Pz b
_.'.!".i" (P T | 5,
‘u'}’?r‘.::.‘"‘.' "'.
v i

P B g S

Circular Buffers

When I announce Issue 9 on the QL Forum, Marcel queried the Circular Buffer article in the issue.
He was wondering if I had simply recreated the Queue handling features of QDOSMSQ, those
being I0Q.SETQ, I0Q.TEST, I0Q.PBYT, and I0Q.GBYT.

Putting it simply, probably! However, as I pointed out, it was a fun exercise in creating the code
from a C++ version, and debugging a particularly insidious bug where allocating common heap
space gets rounded up!

Thanks Marcel, at least I know one person read it!

Learning Assembly Language

TMD2003 wondered about learning Assembly Language and started a thread! on the QL Forum®.
On the second page of the thread, Tinyfpga issued this statement:

In Basic all I have to do start my journey into the programming world is to:- Type into QD

OPEN #1,con_
OUTLN #1,310,60,50,300
CLS #1 : BORDER #1,1,7
INPUT #1,a$

1 then save the text in a ram disk, press the execute button and ,"hey presto", I see an app on my
screen. What could be an easier introduction to programming?

Thttps://qlforum.co.uk/viewtopic.php?f=3&t=3976
2Yes, I know, it’s not really feedback on the previous issue of the eMagazine, but I thought it was relevant.

https://qlforum.co.uk/viewtopic.php?f=3&t=3976

3.3

16 Chapter 3. Feedback

Well, I decided that that would be a good start to the new Beginner’s feature, so I've taken up
Tinyfpga’s “challenge” in this issue and converted his easy introduction to programming into
Assembly Language.

Wolfgang’s Feedback on Label Alignment

Wolfgang Lenerz also mentioned a foible he has discovered in the way I format my source code for
Assembly Language programs and utilities. This is quite a weird foible, in my opinion, but never
the less it needs looking into. Here are Wolfgang’s comments:

* I downloaded the QL Assembly Language issue 9. As usual, it’s fun to read! I have a small
comment regarding your label emplacements - I hope you don’t mind. Looking at the ql2win
filter programs, it starts like this:

start
bra.s checkStack
dc.1 $00
dc.w $4afb

name
dc.w name_end—name—2
dc.b *QL2WIN’
name_end equ

version
dc.w vers_end—version —2
dc.b ’Version 1.00°
vers_end equ =

checkStack

Let’s suppose I wanted to print out the version, I might start that by using the lines:

lea version ,al
move.w (al)+,dl

somewhere in the code. That would work fine.

Now make the program name any number of odd characters, like ’"QL2WINa’ and leave the
rest as is. One would think that this shouldn’t make any difference.

Strangely enough though, when you run this, the line lea version,al will give you an address
error’ as Al will point to an odd address!

If you now move the version label to the line dc.w vers_end-version-2, everything
will be fine again, whether the name length is odd or even.

So what happens? The assembler (at least the macro assembler, I don’t know about George’s)
will go through the file and note the address of the version label. This comes right after
the bytes of the name, and if the name length is uneven, that address is also odd. Then the

3 Admittedly, you won’t have a problem on QPC - but that is because QPC emulates an 68020, which can handle
word and longword reads/writes at odd addresses. You won’t have a problem with SMSQmulator either i.e. no address
error exception, but you will get "unexpected results"...

3.3 Wolfgang'’s Feedback on Label Alignment 17

assembler continues and notes the DC.W directive. As this would lie at an odd address, it
inserts a filler byte - which comes after the version label.

If you now put the label on the same line as the DC.W directive, the assembler puts in the
filler byte before noting the address of version label.

This is why there is no problem with leaving labels inside of actual code even above the line
the label refers to - code is always word aligned. But if you start handling bytes, then you
might get an odd address at a label.

This is why most people leave more space between the beginning of the line and the start of
the opcode - it leaves more space for putting the labels in front of them.

Interesting! I’ll answer the last point first, I put labels on a separate line because I prefer it that way.
I was brought up on COBOL where that was required. It has sort of stuck. I never realised it would
cause so much trouble though.

I decided to run a few tests, using GWASL, GWASS and OMAC which are the assemblers I own.
The source code was as follows:

R section code

start
bra.s checkStack
dc.1 $00
dc.w $4afb

name
dc.w name_end—name—2
dc.b 'QL2WIN’
name_end equ

version
dc.w vers_end—version —2
dc.b ’Version 1.00°
vers_end equ =

start?2
bra.s checkStack
dc.1 $00
dc.w $4afb

name?2
dc.w name_end2—name2—2
dc.b 'QL2WIN’
name_end2 equ =

version?2
dc.w vers_end2—version2 —2
dc.b ’Version 1.00°
vers_end2 equ =

checkStack

moveq #0,d0
rts

; end

18 Chapter 3. Feedback

I uncommented the section code and end lines to compile with QMAC. The results of my
experimenting are shown in table 3.1.

| GWASL | GWASS | QMAC |

start $0000 $0000 $0000
name $0008 $0008 $0008
name_end $000D $000D | $000D
version
vers_end $001C $001C $001C
start2 $001C $001C $001C

name2 $0024 $0024 $0024
name_end2 | $0029 $0029 $0029
version2 $002A $002A $002A
vers_end2 $0038 $0038 $0038

Table 3.1: Weird Label Addresses

The odd addresses, that we care about, are highlighted. Just taking a slightly edited extract from the
GWASL/GWASS listing files, we can see the problem:

000D 00 version

000E 000C dc.w vers_end—version —2
0010 5665 7273 696F 6E20 312E dc.b ’Version 1.00°
001C vers_end—version —2

The label version, is at address $000D, or 13 in decimal, which is definitely odd. A similar output
can be seen in the listing file from QMAC.

Well, that’s a bummer indeed! How to resolve the issue? Simples!

start
bra.s checkStack
dc.1 $00
dc.w $4afb

name
dc.w name_end—name—2
dc.b 'QL2WIN’
name_end equ

ds.w O ; Force word alignment

version
dc.w vers_end—version —2
dc.b ’Version 1.00°
vers_end equ =

checkStack
moveq #0,d0
rts

3.4

3.4 Wolfgang’s Comments on Q12Win_asm 19

By adding the line ds.w 0 to force word alignment, the problem goes away. This is because the
alignment byte is inserted before the label and not at the label as before. This extract from the
GWASL/GWASS listing files shows the fix in place:

000E version

000E 000C dc.w vers_end—version —2
0010 5665 7273 696F 6E20 312E dc.b ’Version 1.00°
001C vers_end—version —2

The version label is now correctly word aligned and has an even address.

Wolfgang’s Comments on Q12Win_asm

Wolfgang also sent me a second email, after asking if he could comment on my code, with the
following comments and observations.

I’m happy for any comments to be sent to me regarding anything I write, I’'m not an expert and
sometimes there are other/better ways to do what I do, feel free to point them out!

* [don’t understand the reason for the code at label gotLine.

This may be down to my use of I0_FSTRG which I was using originally, instead of I0_FLINE
which I changed it to use instead. I think, if I remember, I had a bug or two, or something wasn’t
quite right with I0_FSTRG hence the change. I might have forgotten to clean up afterwards!

* You test for the presence of LF at the end of the string. But, in your scheme, it will always be
there!Well, only if the line was shorter than the buffer length.

Looking at the code (q12win_asm) I see that gotLine looks for the linefeed, and if not there,
skips to putLine to write out the buffer, before reading the next chunk again by branching back to
readLoop.

* Indeed, if you get a line that is too long for the buffer, the trap comes back with a buffer
full error (-5) (or, sometimes, mistakenly, with an overflow error, -18) - and in that case you
abandon the treatment as you leave with the error. So the only time you get to the label is
when the line does have the correct LF at the end - no need to check for it.

This is obviously (now you mention it) a bug. You are correct, if the buffer is too small I will get an
error, so I'll never be able to read the next chunk of the partial line. Thanks for pointing this out.

* You should really also treat the bf£1* error, by just writing the line so far, and then getting
the rest of it.

See above! I thought I was doing this, but the trap handling code breaks it. Duh!

* When there is an EOF at the read trap, you leave w/o error. What if the last file in the file
didn’t end with LF or CR/LF? You’ll also get an EOF, but there will be a remainder still in
the buffer. Shouldn’t the remainder still be written out?

Yes, another bug that needs fixing. Thanks.

¢ Consider this code:

4Buffer Overflow

20 Chapter 3. Feedback

(jump here from start)

checkStack
cmpi.w #numchans,(a7) ; Two channels is a must
beq.s ql2win ; Ok, skip error bit
bad_parameter
moveq #err_bp ,d0 ; Guess!
bra errorExit ; Die horribly
ql2win
moveq #timeout ,d3 ; Timeout

After checking for the correct number of channels, you branch to q12win if that is ok, else
you continue and treat the error. May I suggest you do the contrary? Check for correct
number of channels and branch to the error code if there is a problem, else continue normally.

Something like this:
bad_parameter
moveq #err_bp ,dO0 ; Guess!
bra errorExit ; Die horribly

(jump here from start)

checkStack
cmpi.w #numchans ,(a7) ; Two channels is a must
bne.s bad_parameter ;

ql2win
moveq #timeout ,d3 ; Timeout

The reason is two-fold.

First of all, a branch not taken is faster than a branch taken. So here, you only take the branch
if there is a problem with the parameters, and in that case you don’t really care if that takes a
microsecond more.

Second, you don’t interrupt the program flow for whoever is reading your program. Instead of
also having to (mentally) jump to the q12win label, you just continue reading. (Admittedly,
this last point is more of a personal preference).

The same reasoning could also be applied in the readloop, after the trap where you test DO
for errors - only branch if there is an error, not if there isn’t.

All of which makes perfect sense, thanks. I usually try to consider the most often occurring case
first, but occasionally, I do things in a different order. I must try harder.

* Maybe you should tell your readers that you don’t explicitly close the channels that were
opened, since the OS automatically closes all channels opened (or rather owned) by a job
when that job is removed.

A good suggestion, thanks. I will. In fact, I’ll do it now!

I have omitted to make clear that any open channels, chunks of heap space allocated to a specific
job, will be reclaimed by the operating system when the job is removed from the system, either
by itself or forcibly by another job. This keeps things nice and tidy and is rather helpful, however,
there’s no harm whatsoever in closing files yourself and returning allocated heap space back to the
Common Heap.

3.5 Bug Fixes for QI2Win/Win2ql 21

* Finally, I presume that you didn’t use the SMSQE queue handling (at smsq_ioq_) for didactic
reasons for your circular buffer (which is what an SMSQE queue is).

Ah yes, the QDOS/SMSQ/E Queue Handling functions! Marcel mentioned those (on the QL
Forum) as well. I was aware of those, but this is some code I’'ve written in C++ for a project, and
I will soon (for certain values of soon) be converting it to Atmel AVR Assembly Language for a
similar project. I thought I would try it out on a language I’m more familiar with first. It was also a
fun project to work with, having been away from the keyboard for a while.

*] know these were a great number of comments, but they wouldn’t exist if you hadn’t taken it
upon yourself to write your greatly enjoyable series!

Comments are always welcome, thanks. It’s good to hear that I have at least two readers! (Not
counting myself, and also, why do I always find bugs/typos after sending out the eMagazine!)

Thanks Wolfgang.

3.5 Bug Fixes for Ql2Win/Win2q|l
3.5.1 QI2Win

The changes to the source code for the bugs identified by Wolfgang are documented below.

To fix the buffer overflow problem identified by Wolfgang, add two extra equates near line 29,
which currently reads as:

err_bp equ —15
err_eof equ —10
me equ —1

Change it to this instead:

err_bp equ —15
err_eof equ —10
err_bffl equ -5
err_ovfl equ —18
me equ —1

We have added, in SMSQ/E nomenclature, err_bffl and err_ovfl as Wolfgang has noted that
occasionally, the error returned in err_ovfl instead of err_bffl. We will use these equates
shortly, but first, let’s fix the buffer size problem. Around line 83, you’ll find this code:

ql2win
moveq #timeout ,d3 ; Timeout
moveq #buffSize ,d4 ; Storage for buffer size for D2
lea buffer ,a3 ; Start of (write) buffer

The problem, identified by Wolfgang, is the moveq #buffsize,d4 instruction. Any buffer over
127 bytes will be sign extended to a long word. This would make the lower word $FF80 in the case
of 128 byte buffers, and as the buffer size is assumed to be positive, this makes for an assumed

buffer size of 65,408 bytes rather than the actual 128. As soon as a line longer than 128 is read,
bang!

22

Chapter 3. Feedback

The moveq should be changed to a move.w as in the following:

ql2win
moveq #timeout ,d3 Timeout
move.w #buffSize ,d4 Storage for buffer size for D2
lea buffer ,a3 Start of (write) buffer

Right then, back to the buffer overflow problems. The code starting at line 102 is where we need to
test for the two new error codes. It currently looks like this:

readLoop
moveq #io_fline ,dO Fetch lines ending with LF
move.w d4,d2 Buffer size
movea.l a4, a0 Channel to read
movea.l a3, al Read buffer start
trap #3 Read a line from input file
tst .1 do ; OK?
beq.s gotLine Yes
cmpi.l #ERR_EOF, d0 All done yet?
beq allDone Yes.
bra errorExit Oops'!

We need to change it to this instead:

readLoop
moveq #io_fline ,dO Fetch lines ending with LF
move.w d4,d2 Buffer size
movea.l a4, a0 Channel to read
movea.l a3, al Read buffer start
trap #3 Read a line from input file
tst. 1 do ; OK?
beq.s gotLine Yes
cmpi.l #ERR_EOF, d0 All done yet?
bne . s overflow Not yet
tst.w dl Did we read anything?
bne.s gotLine Yes, deal with it
beq allDone All done now
overflow
cmpi.l #ERR_BFFL, d0 Buffer overflow?
beq.s gotLine Yes, write it out unchanged
cmpi.l #ERR_OVFL, d0 Buffer overflow (apparently!)
beq. s gotLine Yes, write it out unchanged
bra errorExit Oops'!

The observant among us — which usually excludes myself — will notice that I test for any input even
when we hit end of file. This helps deal with Wolfgang’s over observation that we can lose the last
line of the input file if it doesn’t fill the buffer.

It will not have a CR/LF added though, if it doesn’t have one when read. If it comes without a QL
line terminator, it goes out without a Windows one as well. Seems fair to me?

3.5 Bug Fixes for QI2Win/Win2ql 23

With these changes, and a suitable test file, the code works as good as it did before. All lines, no
matter how long, will be correctly written out and converted to Windows format line endings.

I’ve included a fixed version of the code in the code repository for this issue, so that you don’t have
to fix it yourself!

3.5.2 Win2ql
As with gql2win, add two extra equates near line 29, which currently reads as:
err_bp equ —15
err_eof equ —10
me equ —1

Change it to this instead:

err_bp equ —15
err_eof equ —10
err_bffl equ -5
err_ovfl equ —18
me equ —1

We have added err_bffl and err_ovfl as previously. The buffer size problem is next in the
source, around line 83, you’ll find this code:
win2ql

moveq #timeout ,d3 ; Timeout

moveq #buffSize ,d4 ; Storage for buffer size for D2
lea buffer , a3 ; Start of (write) buffer

Once again, the moveq should be changed to a move.w as in the following:

win2ql
moveq #timeout ,d3 ; Timeout
move.w #buffSize ,d4 ; Storage for buffer size for D2
lea buffer , a3 ; Start of (write) buffer

Back to the buffer overflow problems. The code currently starting at line 100 is where we need to
test for the two new error codes. It currently looks like this:

readLoop
moveq #io0_fline ,dO ; Fetch lines ending with LF
move.w d4,d2 ;. Buffer size
movea.l a4, a0 ;: Channel to read
movea.l a3, al ; Read buffer start
trap #3 ; Read a line from input file
tst .1 do ; OK?
beq.s gotLine ; Yes
cmpi.l #ERR_EOF, dO ; All done yet?
beq allDone ; Yes.
bra errorExit ; Oops!

24 Chapter 3. Feedback

We need to change it to this instead:

readLoop
moveq #io_fline ,dO ; Fetch lines ending with LF
move.w d4,d2 ; Buffer size
movea.l a4, a0 ; Channel to read
movea.l a3, al ; Read buffer start
trap #3 ; Read a line from input file
tst .1 do ; OK?
beq.s gotLine ; Yes
cmpi.l #ERR_EOF, d0 ; All done yet?
bne.s overflow ; Not yet
tst.w d1 ; Did we read anything?
bne.s gotLine ; Yes, deal with 1t
beq allDone ; All done now

overflow
cmpi.l #ERR_BFFL, d0 ; Buffer overflow?
beq.s gotLine ; Yes, write it out unchanged
cmpi.l #ERR OVFL, d0 ; Buffer overflow (apparently!)
beq.s gotLine ; Yes, write it out unchanged
bra errorExit ; Oops!

This is pretty much the same changes as for ql2win. I test for any input even when we hit end of
file, as before, so that when the last line of a file doesn’t fill the buffer it will still be written out.

As with gl2win, it will not have a QL line ending LF added if there wasn’t one presnet when the
line was read. If it comes without a Windows line terminator, it goes out without a QL one as well.
Seems fair to me?

4.1

- Pz b
_.'.!".i" (P T | 5,
‘u'}’?r‘.::.‘"‘.' "'.
v i

P B g S

Introduction

This is a new feature starting in this issue. It stems from a post on the QL Forum from TMD2003
who was wondering about how to get started learning Assembly Language as a “noob”. The topic
is this one' on the forum. A number of useful answers were given, some pointing at my book and
these eMagazines.

Do Basic Things

On the second page of the thread, Tinyfpga issued this “sort of” challenge:
In Basic all I have to do start my journey into the programming world is to:- Type into QD

OPEN #1,con_
OUTLN #1,310,60,50,300
CLS #1 : BORDER #1,1,7
INPUT #1,a$

I then save the text in a ram disk, press the execute button and ,"hey presto", I see an app on my
screen. What could be an easier introduction to programming?

Well, I like a challenge, even when it’s not really intended as one, so I decided I would create the
code to do the necessary.

The first thing to note is how simple it looks from SuperBASIC to do what appears to be a simple
thing. It’s 4 lines of code, how hard can that be?

Well, SuperBASIC takes the typed in commands, parses them and if all is well, execution takes the

Thttps://qlforum.co.uk/viewtopic.php?f=3&t=3976

https://qlforum.co.uk/viewtopic.php?f=3&t=3976

4.2.1

26 Chapter 4. Beginners’ Corner

tokenised code and converts it to various calls to the ROM, Toolkits and such like, and the result is
a seemingly simply result. Under the covers there’s a whole lot of work taking place.

Program Constants

I created the code in the various listings in this chapter to do the conversion from SuperBASIC to
Assembly. I chose to create a job, that multitasks alongside SuperBASIC but I could have made it a
CALLable routine instead. Let’s dive in! Listing 4.1 shows the constants I used.

In the original, I had QDOS versions for the vectors and traps, for this eMagazine, I’ve converted
things to use SMSQ/E versions.

]

; A simple multi—tasking job for TinyFPGA/TMD2003 to :

; Open #n,con_

; OUTLN #n,310,60,50,300

; CLS #n

; BORDER #n,1,7

;: INPUT #n, some_text_from_user
;. Die!

; Norman Dunbar
; 20 November 2021.

)

; Some definitions to make life simple(r)!

]

WHITE equ 7 . White colour
BLACK equ 0 ;. Black colour
BORDCOLOUR equ WHITE ;. Border colour
BORDWIDTH equ 1 ; Border width
PAPER equ BLACK ; Paper colour

INK equ WHITE ;. Text colour

CON_W equ 310 ;. Console width
CON_H equ 60 ; " height
CON_X equ 50 ; " X position
CONY equ 300 R " Y position

BUFFERSIZE equ 256 ; User input buffer size

; I use GWASS as my assembler, it has the QDOS traps etc built
; in. It doesn’t however, have the PE stuff, so these two are
; required.

IOP_PINF equ $70 ; Get PE information
IOP_OUTL equ $7a ; OUTLN

; GWASS also doesn’t know about SMSQ/E names, so these are now
; required.

9

4.2.2

4.2 Do Basic Things 27

OPW.CON equ $c6 ; Open a console, border, etc
IOW.CLRA equ $20 ; CLS whole window

IOB .SBYT equ $05 ; Print one byte to channel
IOW .ECUR equ $0E . Enable cursor

I0OB . FLIN equ $02 ; Fetch a line of text plus LF
UT.WTEXT equ $dO ; Print some text

SMS. SSJB equ $08 ; Suspend a job

SMS.FRJB equ $05 ; Force remove a job

Listing 4.1: Tinyfpga - Constant Definitions

There’s nothing much here apart from the new style, SMSQ/E names. Most of these are trap codes
but a couple are vectored routines which can be used to call the trap routines but in a simpler
manner. For certain values of simpler, sometimes.

Job Header

Listing 4.2 shows the “pretty much boilerplate” code that all jobs need to have at the start. Seasoned
readers can skip this next explanation!

A job in SMSQ/E requires a standard job header. This is the same as it was back in the old QDOS
days, and consists of 10 bytes of boiler plate code, followed by the job’s name in the standard
format of a word defining the length of the name, followed by the bytes of the name.

There are numerous ways to set up the first 6 bytes. I prefer a short branch to the job’s actual start
followed by a long word of zero. Back in the days when I wrote code for a living, this could have
been used to set up a serial number for copies of the program(s) - there’s enough room in a long
word for 232 different values. Minus 1 if you don’t want a serial number of zero!

Regardless of how you set up the first 6 bytes, bytes 6 and 7 (starting from zero) will always be the
constant value of $4AFB. This is the marker word used by QDOS and SMSQ/E to indicate a job’s
code follows.

Immediately after the marker word, we have a word defining the size of this job’s name, here we
see it is 8 bytes long, followed by the bytes of the job name itself. In this case, I set the job name to
“TinyFPGA”.

; Job’s require a header. This is basically boilerplate , except
; for the job name’s length and the name of the job. This will
: need to be EXEC/EXEC W/EX or EW’d to execute it.

Start

bra.s open_console ; Skip over job header
dc.1 O ; 4 bytes, can be any value
dc.w $4afb ; Job flag, must be $4afb
dc.w 8 ; Length of job name

dc.b "TinyFPGA" ; Bytes of job name

Listing 4.2: Tinyfpga - Job Header

Why does a job need a name? It doesn’t! But if it has one, it makes life easier when using the
SuperBASIC JOBS command, or the QPAC2 Jobs Thing to list the various jobs running in the
system.

423

28 Chapter 4. Beginners’ Corner

Opening a Console Channel

The first task in the challenge is to open a console channel. How we do this is shown in Listing 4.3.
Bear in mind that there are other Trap calls available to the programmer to open files, and a console
channel is just a file. Here we will use a vectored utility which allows the “open channel” to be
simplified to one call. Without the vector we would have to open the channel, set the paper, strip
and ink colours, and set the border width and colour too. I don’t know about you, but I prefer to do
less typing in my programs!

The 4 bytes at label con_def define the border, paper and ink attributes. Here I'm using some of
the constants defined in Listing 4.1 which makes it easier if I decide I don’t like Tinyfpga’s choice
of colours, and want to change things.

The 4 words immediately following, at label out1n_def, are used for two separate purposes. The
first is when we open the console channel — they define the width, height, x position and y position
of the opened console channel.

The second use is when we try to OUTLN the channel. That function requires a 4 word block of
data in exactly this format, so we can use the same code for two different things.

The fact that label exists between the two lumps” of code makes no difference. A label doesn’t
generate any code or data in the assembled program.

; Needs a channel open first. This can be done in a couple of
; ways, but this is probably the easiest. It will open a con_
; channel of the required size and border it.

; UT_CON uses all of the following from con_def and outln_def
; IOP_OUTLN only uses the latter.

con_def
dc . b BORDCOLOUR . Border colour
dc .b BORDWIDTH ;. And width
dc.b PAPER ; Paper/strip colour
dc.b INK ; Ink colour
outln_def
dc.w CON_W ;. Width
dc.w CON_H ; Height
dc.w CON_X ; X pos
dc.w CON_Y ; Y pos
open_console
lea con_def,al ;. Parameters
move .w OPW.CON, a2 ; C6 = CONSOLE required
jsr (a2) ; Open Console & set params
bne die ; If it failed — bale out

Listing 4.3: Tinyfpga - Open a Console

Having got the console channel definitions out of the way, we can open it and set the attributes with
a call to the vectored OPW.CON utility. This call requires that the A1.L register points at the byte
defining the border colour, thus con_def, and that’s all.

2This is a technical term!

424

4.2 Do Basic Things 29

To call a vectored utility we get a word from the ROM (as was in the old days) at a certain address,
in SMSQ/E this address is labelled OPW.CON and this contains the address where the actual code
we wish to execute lives. In the ROM, there is a long list of available vectored routines which we
can use in our own code.

After calling the vectored utility, we will have an error code in DO.L and, if nothing went wrong,
DO.L will be zero, the Z flag will be set for us, and A0 .L will contain the channel identifier for
the newly opened channel. Note that this is not the same as a SuperBASIC channel number.
SuperBASIC holds a table of channel identifiers and indexes that table using the channel number,
not the actual channel identifier.

If there was an error, the error code is in DO. L as noted, and the Z flag will not be set. In this case,
we simply jump to the code at label die, where the error code will be returned to SuperBASIC and
the job aborted.

Do We Have the Pointer Environment?

Tinyfpga’s challenge was to OUTLN the opened channel. To do this we need to ensure that the
Pointer Environment is present. The code in Listing 4.4 does exactly this by calling the I0P.PINF
function. This is not a vectored utility, this is a trap call. These are slightly different as they execute
as exceptions and not as normal subroutuines.

To test if the PE is present we need a channel identifier in register A0.L — we already have that
from above; we need a timeout in register D3.W and we need the value $70 in register DO.L>. After
setting up the registers, a trap #3 call is made and on return, an error code will be found in register
DO.L however, the Z flag will not be set.

; We only get here if it worked. A0 now holds the channel id.
; Most, if not all, QDOSMSQ code preserves the AO register.

; Check if the PE is installed. If not, ignore the error and
; skip to handle clearing the screen "manually".

check_pe

moveq #IOP.PINF, dO ; IOP_PINF

moveq #—1,d3 ; Timeout (Preserved)
trap #3

tst.1 dO ; Errors?

bne.w cls_console ; PE missing

Listing 4.4: Tinyfpga - Check for Pointer Environment

Why is the Z flag not set? Because the trap code executes as an exception, part of what it does
before executing is to stack the status register. After execution, the exception code returns to user
code using the RTE instruction, not RTS. The RTE unstacks the old status register value and puts it
back into the status register. This obliterates any flags set within the exception (ie, trap) code so
none of the flags will represent what happened within the trap code.

This means that every time we return from a trap call, we must test if DO. L is zero or not. This will
set the Z flag accordingly and we can then tell if the trap call worked or failed.

In this case, we don’t really care if the PE is present or not. Well, I assumed this to be the case
based on the challenge. If the PE is found, we can OUTLN the channel as desired, but if it wasn’t

31t need not be actually the whole of register DO, however, a moveq instruction fills the whole of the register.

4.2.5

4.2.6

30 Chapter 4. Beginners’ Corner

found, we can just CLS the channel anyway and carry one — in this example.

Pointer Environment Found

If the PE is present, we can OUTLN the channel. Listing 4.5 shows the code to do this. Again,
I0P.QUTL is a trap call, not a vector. We are required to set register DO to $7A — which is what
I0P.QUTL is defined as; Register D1.L should hold the X and Y shadow widths for the OUTLN —
we are not using shadows; Register D2* should hold 1 to preserve the window contents so that a
previously OUTLN’d window can be moved and the contents preserved, or zero to not bother. As
this is the first OUTLN call for this window, we have to use zero.

)

; PE is present.

; OUTLN the window,D3 (timeout) was preserved in IOP_PINF as
; was AO (channel id for the console).

outln_console

moveq #IOP.OUTL, dO ;. IOP_OUTL

moveq #0,dl ; No shadows

moveq #0,d2 ; Don’t preserve contents
lea outln_def ,al ; Window sizes (W,H,X,Y)
trap #3 ; Do it

tst.1 dO ; Errors?

bne die : Yes, bale out

Listing 4.5: Tinyfpga - Pointer Environment Present

After the trap call, we check for errors as explained above, and if there were any, we exit the job

via the code at label die. If there were no errors, we drop in to the following code to clear the
screen.

Clear Screen

If the PE was found to be missing, we don’t really care in this small example as all we need from
the PE is the OUTLN call, and we drop in here to clear the console channel. If the PE was present,
the channel has been OUTLN’d, but we are here again to clear it also. Listing 4.6 sets DO.L to $20
also known as TOW_CLRA; D3.W is still the same timeout as before; AO. L is still the console channel
identifier. Those are all we need, so we then trap #3 to clear the screen. On return, DO.L is tested
in the usual manner and on any errors, we bale out of the job.

; PE is missing.

; Clear the screen. The timeout and channel ID have been
; preserved over the last two routines.

E}

cls_console

moveq #IOW.CLRA, dO ; CLS whole window

trap #3 ; Do it

tst.1 doO ; Any errors , probably not
bne die : Yes, bale out

Listing 4.6: Tinyfpga - Clear the Screen

4The documentation doesn’t mention a size!

4.2.7

4.2.8

4.2.9

4.2 Do Basic Things 31

Print a Prompt

This was not part of the original challenge, but I added it when debugging a problem. I decided
to leave it in. The code in Listing 4.7 simply prints a prompt of ‘>’ to the console channel. This
is facilitated using I0B.SBYT which requires that DO.L is set to $05, aka I0B.SBYT one of our
constants; D1.B is set to the character to be sent to the channel; D3.W is the same old timeout value
and AO.L is the channel identifier.

After the trap, DO.L is tested in the usual manner and we exit the job if any errors occurred.

; Print a ">
; preserved.

"nen

prompt to the channel. Timeout/channel Id still

con_prompt

moveq #IOB.SBYT, dO : Print one character

moveq #’>’,dl ; The prompt character
trap #3 ; Do it
tst.1 dO ; Any errors?

bne die : Yes, bale out

Listing 4.7: Tinyfpga - Print a Prompt

Enable the Cursor

This is also not part of the original channel, but a cursor must be enabled when we want to get
input from a console channel. We have yet another trap call to help with this. The code in DO.L
is I0W.ECUR the timeout and channel identifier are in the usual registers. Errors are tested in the
normal manner as this is a trap call, not a vectored call.

Listing 4.8 shows the code.

; Enable the channel’s cursor. We need one to get input from
; a console channel. Timeout & channel id preserved still.

]

con_cursor

moveq #IOW.ECUR, dO ;. Enable cursor
trap #3 ; Do it

tst.1 dO ; Errors?

bne die ; Yes, bale out

Listing 4.8: Tinyfpga - Enable a Cursor

Get Some Input

Listing 4.9 shows the code we need to obtain a line of input from the user. How long is a line? Well,
that’s all down to the programmer. However, we define an input buffer, at label input_buffer, to
be 256 bytes long, plus an extra 2 bytes. BUFFERSIZE is one of our constants and defaults to 256,
but you can change it.

Why 2 extra bytes? We are accepting a string from the user. Strings in SMSQ/E are defined as a
word holding the size followed by the bytes of the string — the job name in this code, for example.
If we wanted to process the string in some way, we would need to know the length.

4.2.10

32 Chapter 4. Beginners’ Corner

I0B.FLIN is the trap call we need to use. This will have DO.L holding $02; D2.W holding the
maximum buffer size we will allow; A1.L points at the destination for the input we receive and
D3.Wand AO.L are the usual timeout and channel identifier.

You will note A1.L is pointing at the third byte in the input buffer, this is where the text will be
stored, the first two bytes are used for the size of the text we obtained.

After the trap call, if there are no errors, we reset A1.L to the start of the buffer this time — it was
changed by the trap call — and store the size word there. We now have a proper SMSQ/E string.
The size word in this case comes from D1.W on return from the trap, where it holds the size of the
input received, including the terminating linefeed.

What happens if there was more input than the buffer size? Nothing, the buffer will be filled to
capacity and the trap call will return. The last character in the buffer will not, therefore, be a
linefeed in this case.

; Grab some input from the console. The timeout and channel id
; are still valid. We point Al at input_buffer+2 as we need the
; start of the buffer to hold the length of the text that

;. follows.

get_input
moveq #IOB.FLIN, d0 ; Fetch input with Linefeed
move .w #BUFFERSIZE , d2 ; How big is my buffer?
lea input_buffer+2,al ; Input buffer space
trap #3 ; Fetch input DI.W = size
tst.1 dO : Errors?
bne die ;. Fraid so
lea input_buffer ,al ; The buffer start this time
move.w dl,(al) ; Store the input size (inc LF)
bra print_input ; Skip over inoput buffer

input_buffer
ds.w BUFFERSIZE+2 ; Buffer for data input

Listing 4.9: Tinyfpga - Request Input

Setting A1.L to the start of the buffer sets us up nicely for printing out the received text.

Printing the Text

This wasn’t part of the challenge, but I added it to show that the data we typed in to the channel
was in fact well received and correctly saved. Listing 4.10 shows the code we use to print out the
received input text. This will include the trailing linefeed is one was present.

This code uses a vectored utility, UT . WTEXT, which internally calls another trap #3 function to print
out the text. Why have I used the vector? The vector requires a pointer to an SMSQ/E string in
A1.L — we already have that. It requires a channel identifier and timeout in AO.L and D3.W — we
already have that.

The corresponding trap call needs the string length in D1.W and A1.L pointing to the bytes of the
text. I prefer using UT . WTEXT.

After the call, we know that the Z flag is set if no errors occurred, so there’s no need to test DO.L on
return. If errors are detected, we again exit the job.

4.2.11

4.2.12

4.2 Do Basic Things 33

Note, this vectored code destroys the timeout value in D3.W. However, at this point we are done
with the infinite timeout we have been using.

; Print the input that the user gave us, including the line

; feed at the end. Al points to the text’s word size, D3 will
; be corrupted by this vector call (timeout) but the channel
id in A0 will not.

]

)

print_input

move.w UT.WTEXT, a2 ; Print a string of bytes
jsr (a2) ; Print it
bne.s die ; Ooops, error

Listing 4.10: Tinyfpga - Printing the Input

Hang on a Few Seconds!

Ok, we are done. Except to give the user a chance to see the text printed on the channel, I've added
yet another extra to the challenge code. The currently running job, named “Tinyfpga”, will be
suspended for a couple of seconds. Listing 4.11 shows how this is done.

SMS.SSJB is a trap call which suspends a job from execution for the number of frames specified in
the D3.W register. D1.L holds the job identifier, or -1 for the current job; and A1.L points at a byte
which will be cleared when this job resumes. As we have no need to signal our reappearance, we
use Zero.

Note that the number of frames is 200. This is 4 seconds in the UK and countries with a 50 Hz
mains frequency. In the USA it’s 60 Hz, so in the USA the delay will be 3% seconds.

After the trap, we do not test for errors, we are about to die anyway.

Suspend the job for a couple of second to let the user see
the output. Then die. Will corrupt AO but who cares!

9

)

)

suspend_job

moveq #SMS.SSJB, d0 ; Suspend a job

moveq #—1,dl1 ; This job

move.w #200,d3 : 4 seconds is 200 frames
movea.l #0,al ; No byte to be cleared
trap #1 ; Suspend the job

Listing 4.11: Tinyfpga - Delay Before Ending

Death of a Job

The job is now complete. We are not required to loop around and keep running, so we cannot allow
the job’s code to simply stop, we need to remove the job from the system. Listing 4.12 shows how
to force remove a job using the SMS.FRJB trap call.

The error code in DO.L is copied into D3.L for return to SuperBASIC — more on that soon — and the
job identifier is loaded into D1.L, we are using -1 again to indicate the current job. After the trap,
no code will be executed as the job is no more, it has shuffled off its mortal coil and gone to meet
its maker!>

SFrom Monty Python’s Dead Parrot sketch.

4.2.13

4.3

4.4

34 Chapter 4. Beginners’ Corner

; The job is complete, remove it from the system. Any error
; codes in DO are copied to D3 ready for EXEC W/EW to collect.
: EXEC/EX don’t bother.

9’
die

move .1l d0,d3 ; Any errors?

moveq #SMS.FRIJB, d0 ; Force Remove a job
moveq #—1,dl1 ; —1 means "this job"
trap #1 ; Kill this job

Listing 4.12: Tinyfpga - Death of a Job

Error Codes

When the job is started using EXEC, or EW, it will never tell you how it ended. There could have
been errors at any stage and you will never know about it. Why not? Because EXEC/EW start up a
job and then return. These commands do not wait for the job to complete. How then can they be
expected to be able to obtain the job’s error code when it finishes — it might run for days after all.

During testing, when the code wasn’t crashing, I ran it with EXEC_W or EW. These commands wait
for the job to complete before returning to SuperBASIC. In this case, the job’s error codes can be
returned to SuperBASIC.

Assembling the Code

If T were to assume that you have downloaded GWASS® for QPC2 and other 68020 based
emulators, or GWASL’ for the QL and 68008 based emulators, and have the code saved as
raml_Tinyfpga_asm, then assembling the code is as simple as this:

* EXEC gwass60_bin or EXEC gwasl_bin to start the assembler;
* Select the option to start assembling;

* Type in the filename: raml_Tinyfpga_asm

* Wait.

After a successful assemble, raml_Tinyfpga_bin will be the executable job. To run it:
e EXEC raml_Tinyfpga_bin: REMark Alternatively, EX raml_Tinyfpga_bin

On a successful execution, a small window will open, with black paper, white ink and a white,
one pixel border. A ‘>" prompt will be displayed in the top left corner. Type some text and press
ENTER. The text you typed will be printed, the job will pause for 4 seconds, and then vanish.

Summary

So that’s the Assembly Language version of Tinyfpga’s challenge. There’s a lot going on under the
covers of SuperBASIC that programmers almost never see. When you start delving ito Assembly
Language, you are responsible for just about everything! Thankfully, SMSQ/E provides numerous
utilities and features that you can call upon to make life easier.

Ohttp://www.dilwyn.me.uk/asm/gwassp22.zip
http://www.dilwyn.me.uk/asm/gwaslp08.zip

http://www.dilwyn.me.uk/asm/gwassp22.zip
http://www.dilwyn.me.uk/asm/gwaslp08.zip

4.4 Summary 35

In future issues, I’ll be delving into a few more of these with, hopefully, enough explanation for
beginners to get started with.

Get hold of the SMSQ/E Reference Manual from:

o Here® for the PDF version; or
 Here? for the ODT version.

8http://www.dilwyn.me.uk/docs/manuals/QDOS_SMS%20Reference%20Guide%20v4.5. pdf
http://www.dilwyn.me.uk/docs/manuals/QDOS_SMS%20Reference%20Guide%20v4.5.odt

http://www.dilwyn.me.uk/docs/manuals/QDOS_SMS%20Reference%20Guide%20v4.5.pdf
http://www.dilwyn.me.uk/docs/manuals/QDOS_SMS%20Reference%20Guide%20v4.5.odt

Pl S g oly, N
?‘.:{ P 'ﬁ."'." T
e 7 el g

5.1 Speedy Stuff

What’s the fastest way to clear a data register from whatever value it has, to zero? Moveq #0,Dn do
you think? Maybe clr.1 Dn? Let’s see. The timings are taken from the Motorola Semiconductor’s
MC68000 Programmers Reference Guide, 4th Edition, Appendix E.

Table 5.1 shows a few instructions which can clear a data register and their timings.

Instruction Clock Cycles
Move.l #0,Dn 12
Moveq #0,Dn 4
Sub.1l Dn,Dn 8
Eor.1l Dn,Dn 8

Clr.1 Dn 6
Andi.1 #0,Dn 16
Move.l Dx,Dn 4

Move.l addr.W,Dn 16
Move.l addr.L,Dn 20
Exg Rn,Dn 6

Table 5.1: Clearing a data register

It appears that two instructions are quickest. Moveq, as its name suggests but also moving data from
one register to another, assuming of course that the source register is indeed already cleared. Now,

what about address registers?
Table 5.2 shows a few instructions which can clear an address register and their timings.

It would appear that clearing an address register is quickest when you have another register already
holding zero, but if not, subtracting the register from itself is the next quickest option.

38

Chapter 5. Quickie Corner

Instruction Clock Cycles
Exg Rn,Dn 6
Movea.l #0,An 12
Suba An,An 6
Move.l Rn,An 4
Move.l addr.W,An 16
Move.l addr.L,An 20

Table 5.2: Clearing an address register

- Pz b
_.'.!".i" (P T | 5,
‘u'}’?r‘.::.‘"‘.' "'.
v i

P B g S

Back in November 2020, there was a “thing” called QLvember' and someone — Kéaroly Balogh is
his name, he’s from Hungary, and Chaing is his nickname on the QL Forum — decided to try and
make the Free Pascal Compiler (FPC) work on the QL. After an exchange of information on QL
Forum, this thread?, he went off and created a cross compiler for the QL.

Eventually, myself and Marcel got slightly involved and helped create a starting set of Pascal “units”
(aka libraries if you wish) to make writing Pascal easy for QL users.

Then I got distracted, my wife and I, after 25 years of marriage (almost), heard the pitter patter of
tiny feet! We bought a puppy! Looking after one of those is hard work — I’d forgotten how hard it
can be — but he’s settled down a bit better now, so I'm getting back into development again. Just
as well I wrote a document detailing how to get hold of the development tools and source code
required to build the compiler and the QL Units. You can find it on my GitHub page, here?.

This article is an attempt to get more people interested enough to help out writing code for the
QL’s run time library and other units. If we can do this, we will have a proper modern, frequently
updated cross compiler for the QL. I'm running FPC on Linux, but it’s also available for Windows
too. Either way, we can now cross compile Pascal code for the QL — there are restrictions obviously,
because the RTL and Units are incomplete, but if more of us join in, we might get something done.

Dare I mention, the FPC compiler is able to compile Object Oriented code, which runs on the QL. I
have a post on the forum here* about this. Tony Tebby will not be amused!

T really hate it when they do stuff like that, taking a month and a concept, and putting them together. Things like

Dryanuary, Veganuary, QLvemver — it makes my teeth crawl! Anyway, enough from the old git!
Zhttps://qlforum.co.uk/viewtopic.php?f=38&t=3057&p=37465#p37465
3https://github.com/NormanDunbar/FPC-CrossCompiler-QL/releases/latest/.
“https://qlforum.co.uk/viewtopic.php?f=3&t=3725

https://qlforum.co.uk/viewtopic.php?f=3&t=3057&p=37465#p37465
https://github.com/NormanDunbar/FPC-CrossCompiler-QL/releases/latest/.
https://qlforum.co.uk/viewtopic.php?f=3&t=3725

6.1

40 Chapter 6. Free Pascal Compiler
Writing Code

Basically, I'm writing QDOS and/or SMSQ routines to match those documented in the Technical
Guides. For example, Listing 6.1 is the Pascal FileOpen function, which opens a file, this is found
in the sysutils unit for the QL.

function FileOpen(const FileName: rawbytestring; Mode: Integer):
—— THandle;
var
QLMode: Integer;
begin
FileOpen:=—1;
case Mode of
fmOpenRead: QLMode := Q_OPEN_IN;

fmOpenWrite: QLMode := Q_OPEN_OVER;
fmOpenReadWrite: QLMode := Q_OPEN;
end ;

FileOpen := io_open(pchar(Filename), QLMode) ;
if FileOpen < 0 then
FileOpen:=—1;
end ;

function FileGetDate (Handle: THandle) : Int64;
begin

result:=—1;
end ;

Listing 6.1: FPC FileOpen function

You can see, on line 11, about half way down, there’s a call to io_open, passing the filename and
the mode the file is to be opened. The code for io_open is shown in Listing 6.2, and is found in
the qdos. inc file. You will hopefully notice from the code that there are two i0_open functions:

* io_open_qglstr: which opens a file using a QL style string for the file name - a word count
followed by the bytes of the string.

* io_open: Which is called from Pascal, and converts the Pascal parameters passed, to suitable
ones to call io_open_qglstr.

You might also notice a function called FileGetDate in Listing 6.1? That one simply returns -1
because it has yet to be written for the QL. And this is a gentle reminder that we need more people
to get involved.

const
_IO_OPEN = $01;

function io_open_qlstr(name_qlstr: pointer; mode: longint): Tchanid;
— assembler; nostackframe; public name ’_io_open_qlstr ’;

asm

movem. 1l d2—d3,—(sp)

move.l name_qlstr , a0

moveq.1 #-—1,d1

move .l mode,d3

moveq .1 #_IO_OPEN, d0O

trap #2

tst.1 dO

6.1.1

6.1 Writing Code 4]

bne.s @quit

move .l a0,do0
@quit:

movem.1 (sp)+,d2—d3
end ;

s

function io_open(name: pchar; mode: longint): Tchanid; public name
—> _io_open ’;
var
len: longint;
name_qlstr: array[0..63] of char;
begin
len:=1length (name) ;
if len > length(name_qlstr)—2 then
len:=length (name_qlstr)—2;

PWord(@name_qlstr) [0]:=1en;
Move (name”,name_qlstr[2],len);

result:=io_open_qlstr (@name_qlstr ,mode) ;
end ;

Listing 6.2: FPC Io_open function

Parameter Passing

The default method of passing parameters around in Free Pascal is named register. This method
passes parameters using registers where it can, as follows:

* The first ordinal number (ie, a numeric value) is passed in register DO.

* The second ordinal number (ie, a numeric value) is passed in register D1.
* The first pointer or reference is passed in register AQ.

* The second pointer or reference is passed in register Al.

* Any remaining parameters are passed on the stack from left to right.

If you look closely at io_open you will see that it takes the address of the QL String for the
filename as a pointer data type. This will be passed in register A0 as per the convention, however,
the eagle-eyed among you will have spotted that there is an instruction move.l name_qlstr,a0 which,
if the above information is correct, simply copies AO to AO.

This is indeed correct, however, it should not be deleted as a spurious line of code. There are other
parameter passing modes, documented on the Free Pascal Wiki”, which use a different manner of
passing parameters. If you delete that spurious line, and the mode changes in future, code will stop
working.

Another problem that might bite you, is when you are usually a bit anally retentive® about setting
up the registers in order, you might, as I did, find yourself overwriting registers DO and D1 with
QDOSSMSQ trap settings, for example, before you’ve grabbed the parameters passed from Pascal.
How do I know this? Don’t ask — but it took a lot of QMONing to find out what was going wrong!

Returning Results

¢ Return values which are 32 bits in size, or smaller numeric values are returned in register DO.

Shttps://wiki.freepascal.org/m68k#Registers
6 Another technical term!

https://wiki.freepascal.org/m68k#Registers

6.2

42 Chapter 6. Free Pascal Compiler

* Pointers are returned in register A0 or DO (platform and calling convention specific).
* 64 bit ordinal values are returned in register pair DO/D1.

You can see, in Listing 6.2, the channel ID being returned from io_open_qglstr in DO instead of
the usual QDOSMSQ manner of returning it in AO.

Join In If You Can

If you can write assembly code, then why not join in? Grab my document and have a go at making
one or more of the missing functions for the QL, work. It’s fun and a good way to be useful —
although my wife, hello dear, begs to differ on my definition of useful!

The main forum thread starts from chaing’s post, linked above. That’s where I have been putting
my patch files and they’ve been accepted into the FPC project, some slightly amended by chaing,
which is fine, he knows this stuff, I’'m just a code monkey! There’s also a good deal of information
on that thread about the way that FPC works for the QL.

If you have questions, ask away, someone will chime in and hopefully, help you out.

One more thing, the FPC project recently’ (8th August 2020) migrated everything from Subversion
as a version control system, to git. The project is now hosted on GitLab and mirrored to gitHub, for
safety, but GitLab is the main repository. You can find it here®.

"Depending on when you read this, maybe not quite so recently!
8hittps://gitlab.com/freepascal.org/fpc/source. git

https://gitlab.com/freepascal.org/fpc/source.git

Note:

. 5 5 o~ A
3 PR A S s Y

" L . 4 &
£ AL W f -,,d-{"ﬁ. ey

@
-

Unless otherwise noted in the text, code listings in this chapter are fragments only, they do

not make up a full, working application.

There are two kinds of heap in the QL:

The Common Heap.
User Heap(s).

What’s the difference? Well, details are below but in summary:

Allocation requests in the common heap will have a 16 byte overhead added to the space
requested, and the amount requested will be rounded up to a multiple of 16. However, if this
leaves a 16 byte gap, then the value will be rounded up to a multiple of 32 instead. Warning:
This is an implementation detail and you should not rely on the rounding being 16 or 32.
Check D1 on return and make sure you got what you requested’;

The value returned in D1, the amount of space allocated, includes the 16 byte overhead plus
the rounding;

The 16 byte overhead is prior to the address returned in AO for the base of the space allocated;
When deallocating common heap, you don’t need to remember the size that was allocated;
Common heap addresses are absolute;

User heap space requests are rounded to multiples of 8 bytes;

There is an 8 byte overhead, but this is not added to the size requested;

The overhead is at the two long words pointed to by the address returned in AO for the base
of the area allocated;

When deallocating user heap space, you need to remember the size of the space allocated.
User heap addresses are relative to A6.

IThanks Marcel.

7.1

44 Chapter 7. Heaps

Common Heap

The common heap is an area of RAM, allocated from the free space area in the memory map,
between the addresses pointed to by SYS_CHPB — the base of the common heap area — and SYS_FSBB
— the base of the free memory area — both relative to A6 of course! The common heap is mainly
used by QDOS/SMSAQ to hold such things as channel definition blocks and other bits of working
storage required by various drivers. Individual jobs can also request areas of space in the common
heap for their own use.

* When a channel is closed the space allocated in the common heap will be reclaimed automat-
ically;

» Likewise, if a driver is (able to be) removed from the system, it’s working storage space will
be reclaimed;

* When a job is removed from the system, perhaps forcibly, then any areas of common heap
owned by the job are also reclaimed by the system.

All of the above can also “voluntarily” free up any space obtained in the common heap, when it is
done with.

To try to avoid fragmenting the common heap, if is advisable to free up space in the opposite order
from that in which is was allocated. For example, if a job requests 10 Kb, 5 Kb then 30 Kb from
the common heap, it should, but it’s not mandatory, to free the 30 Kb allocation, then the 5 Kb
allocation and finally, the 10 Kb allocation. This doesn’t work all the time — some other jobs may
have allocated space between those mentioned and freeing will still leave the common heap a little
more fragmented than is desirable.

Note: There are similar problems with heap allocation on other operating systems, not just the QL.
The advice on those systems is also, deallocate in the opposite order that you allocated.

A job should, really, request a single chunk of common heap and use that as a user heap, allocating
space from the user heap rather than the common heap, especially if the allocations are small in
size” as this will help to reduce common heap fragmentation. User heaps are discussed in the next
section.

Fragmentation of the common heap can lead to situations such like a channel which cannot be
opened as there isn’t enough contiguous free space to create a channel definition block.

Note that when allocating common heap space, the amount of RAM allocated will be rounded up
to a multiple of 16 (or, potentially, 32) bytes. Each chunk of common heap allocated will have a 16
byte overhead on top of the space requested. For example:

* The code requests 10 bytes of common heap;

* The allocation will be 16 bytes after rounding up;

» The total space allocated from the common heap’s free space will be 32 to include the 16
byte overhead;

* The value returned in D1, the amount of space allocated, will include the overhead and
rounding — it will be 32.

The 16 byte overhead holds the data detailed in Table 7.1.

The long word at offset -$0C will normally be zero for space allocated by jobs — not drivers — as
the free space list in the common heap is maintained by a separate linked list of pointers, based on
the system variable SYS_FSBB.

2Based on which definition of “small” I wonder?

7.1.1

7.1 Common Heap 45

] Offset(A0) \ Size \ Description ‘
-$010 Long | Length of this block.

-$0C Long | Either a pointer to the address of the I/O driver code which
will free this block; or a pointer to the next free area in the
common heap; or zero.

-$08 Long | ID of the job which owns this area of common heap.

-$04 Long | Address of a byte to be set when this area of heap is freed.

Table 7.1: Common Heap Header

Most jobs I've looked at, including many® of my own, don’t bother with user heaps — see next
section — and simply allocate space in the common heap as and when required. Perhaps the authors,
myself included, need to think about which heap is best for the application?

Traps

Note that when allocating common heap space, the amount of RAM allocated will be rounded up
to a multiple of 16 (or 32) bytes.

There are two traps to manage allocations in the common heap.

Sms.achp

This trap call used to be known as MT_ALLOC in QDOS, but is now called SMS. ACHP in SMSQ/E.
The obligatory table of parameters can be seen in Table 7.2.

D3 is interesting, Pennel doesn’t mention it, but the SMSQ/E Manual (version 4.5) says that memory
will be allocated in Fast RAM if D3 is zero, and in ST compatible RAM if “acsi”, on those machines
with ST and Fast RAM.

Example of Use

Listing 7.1 shows a small example of requesting 1 byte of space from the common heap, then
returning it to the heap. I tested the code by running it through QMON?2 to check on the numbers
returned in the appropriate registers and confirm the rounding and so on. I also checked the 16
bytes prior to the base address in A0 and the overhead data can be seen there.

The figures listed are examples from my execution, your figures, should you attempt this code, will
most likely differ,

sms.achp equ $18 ; Allocate common heap
sms.rchp equ $19 ; Free common heap
start
moveq #sms.achp,dO ; Trap code
moveq #1,d1 ; A single byte
moveq #—1,d2 ; For this job
moveq #0,d3 ; For SMSQ/E on ST machines
trap #l1 ; allocate
tst.1l dO ; Ok?
bne.s allocated ; Yes, free the heap space
rts : No, return error of S%*BASIC

3 Ahem, all!

46 Chapter 7. Heaps

Calling Parameters
Register Usage
DO.L SMS.ACHP = $18
DI1.L Number of bytes required.

D2.L ID of owning job. -1 indicates the current job.
D3.L Zero, or “acsi” for Atari TT and machines with
ST and Fast RAM.

Return Parameters

Register | Usage

DO.L Error code, or zero for no errors.
DI1.L Actual number of bytes allocated, including the
16 byte overhead.
D2 Corrupted.
D3 Corrupted.

AO.L Base address of the allocated space. This is the
first byte after the header for the block.

Al Corrupted.
A2 Corrupted.
A3 Corrupted.

Errors in D0
ERR.IJOB | Invalid job ID
ERR.IMEM | Out of memory

Table 7.2: SMS.ACHP Parameters

allocated

moveq #sms.rchp ,dO ; Trap code
trap #1 ; Free heap space
rts ; There are no errors, ever!

Listing 7.1: Common Heap Allocation Example

When I executed the code in Listing 7.1 and traced it with QMON?2, I extracted the following detail:

* The base of the allocated block of RAM was at address $1014A0, this was the address passed
back in AO.L;
* D1.L returned the value $20 — for 32 bytes allocated in total;
* The 16 bytes prior to the base address were:
— -16(A0) = $00000020 = the size of the block allocated;
— -12(A0) = $00000000 = Pointer to next free section of common heap, or driver deallo-
cation code;
— -8(A0) =$00000000 = Owning job Id;
— -4(A0) = $00000000 = Address of byte to be set when this block is freed.

Interesting would you say? I requested a single byte yet I see that 32 bytes were allocated. This
confirms that the 16 byte overhead is included in the allocated space value returned in D1, which
none of the docs* mention.

I did some other tests with different request sizes and in all cases, it appears that the rounding is to

4Pennel, Dickens and QDOS/SMSQ Reference Manual, 4.5.

7.2

7.2 User Heaps 47

16 bytes and not to 8’ as indicated in the documentation.

Sms.rchp

This trap call used to be known as MT_RECHP in QDOS, but is now called SMS.RCHP in SMSQ/E.
The obligatory table of parameters can be seen in Table 7.3.

Calling Parameters
Register | Usage
DO.L SMS.RCHP = $19
AO.L Base address of the allocated space.
Return Parameters

Register | Usage
DO.L Ignore, no errors are returned.
DIL Corrupted.
D2 Corrupted.
D3 Corrupted.
AOL Corrupted.
Al Corrupted.
A2 Corrupted.
A3 Corrupted.
Errors in D0
None — the trap call never fails.

Table 7.3: SMS.RCHP Parameters

Listing 7.1 shows an example of the use of this trap.

Vectors

There are a pair of vectored routines, MEM. ACHP and MEM.RCHP, which enable code to manipulate
space in the common heap. These vectors are atomic and must be called with the processor running
in Supervisor Mode. They are normally used by device drivers to allocate space in the common
heap for channel definition blocks for the Open function of the driver. The entire area allocated is
zero filled if enough RAM existed in one contiguous block.

The 16 byte header for the area allocated is not filled in by the vectored code, it is the responsibility
of the device driver code to do this.

Other than to mention that they exist, their use from within a device driver is beyond the scope of
this eMagazine, and so they will not be discussed further.

User Heaps

If your job requires allocating small chunks of RAM, perhaps for a linked list, or a tree of structures,
then rather than slicing and dicing the common heap into tiny bits, it is advisable to allocate a
large, single, chunk of common heap and use that as a user heap to allocate the small chunks. The
advantage of this process is that when done, you simple deallocate the common heap space and
free up a large chunk on one go, rather than having to free up lots of small chunks. This helps to
prevent fragmentation of the common heap.

5T wonder if Pennel says 8 because that’s what QDOS did, but SMSQ/E uses a 16 byte rounding instead?

7.2.1

48 Chapter 7. Heaps

The steps involved in this process are:

 Allocate a suitable sized area of common heap to be used for your user heap;

* Link the allocated area into your job’s user heap space;

* Allocate space in the user heap, as and when required;

* Use and abuse the user heap space allocated;

* Optionally, but good practice, deallocate used space when finished with;

* Release the common heap at job end — this may be manually done, or left to QDOS/SMSQ
to do it automatically.

Note that when allocating user heap space, the amount of RAM allocated will be rounded up to a
multiple of 8 bytes. Each chunk of user heap allocated will have an 8 byte overhead on top of the
space requested, and possibly rounded up. For example:

* Request 10 bytes of user heap;

* The allocation will be 16 bytes after rounding up;

* The total space allocated from the user heap’s free space will be 16 as the 8 byte overhead is
not added to the requested size!

The 8 byte overhead holds the data detailed in Table 7.4.

] Offset \ Size \ Description

$00 | Long | Length of this block.
$04 | Long | A relative pointer to the next free space in the user heap
space.

Table 7.4: User Heap Header

The overhead will be written to the start of the allocated heap space, at the address returned in AO,
and is considered part of the user heap allocation. This is different to the overhead in common heap
space.

You will need to save the size of each and every user heap allocation so that it can be returned to the
heap’s free space when done with. You can do this manually — possibly dangerous if you get the
sizes wrong — if you only have a couple of allocations, or request 8 bytes more for each allocation
and use the space allocated from address 8 (A0, A6) on return, rather than that from 0(A0,A6).
You can also, if applicable, simple rerun the code to create the user heap space which will free up
all allocated chunks in the user heap in one fell swoop.

Traps

Note that when allocating user heap space, the amount of RAM allocated will be rounded up to
a multiple of 8 bytes. Each allocation will itself have an 8 byte overhead as discussed in Table
7.4, the 8 bytes is taken out of the space requested and is the first two long words in the allocated
section of the heap.

In other words, if you need 10 bytes, ask for 18 because the first 8 bytes, at the address returned in
A0, will contain the 8 byte overhead. This is useful to keep a hold of as the length of the block is
needed when returning the allocated RAM back to the user heap free space with SMS . REHP.

All addresses are relative to A6 when allocating or deallocating user heap space.

7.2 User Heaps 49

Sms.alhp

Table 7.5 shows the registers that need setting up to call the SMS. ALHP trap to allocate memory in a
user heap. The return parameters are interesting too.

Calling Parameters
Register Usage
DO.L SMS.ALHP = $0C

DI1.L Number of bytes required. Does not include the 8
byte overhead. Perhaps ask for 8 extra bytes?

AO.L Pointer to a pointer to the free space list. Relative
to A6.

A6.L Base address of job.
Return Parameters

Register Usage

DO.L Error code, or zero for no errors.

DI1.L Actual number of bytes allocated — should be the
number requested and includes the 8 byte

overhead.
D2 Corrupted.
D3 Corrupted.

AO.L Base address of the allocated space. This points
to the first byte of the header for the block.

Relative to A6.
Al Corrupted.
A2 Corrupted.
A3 Corrupted.
A6 Preserved.

Errors in D0
ERR.IMEM | No area of free space was large enough to
allocate.

Table 7.5: SMS.ALHP Parameters

Sms.rehp

This trap call is used when initially adding an area of RAM to be used as a user heap, or when
freeing an allocation within the user heap. In the former case, the long word at (A6,A1.L) should
be zero, in the latter, it will be some other, non-zero value. Listings 7.2 and 7.4 show examples of
both.

User Heap Example

Listing 7.2 shows a small example where a chunk of 64 Kb of common heap is requested from the
system, and, if successfully allocated, is converted to a user heap. the code checks return values
from traps — it’s assembled to be CALLed from SuperBASIC/SBASIC — and if any errors occur, the
code exits back to SuperBASIC/SBASIC with the error code.

The allocated area of common heap is then converted to a user heap by simply making sure that the
free space address, pointed to by the long word at myHeap, is zero, then calling the SMS . REHP trap.

I sms.achp equ $18

50 Chapter 7. Heaps

Calling Parameters

Register | Usage

DO.L SMS.REHP = $0D

DI.L Length of space to link (back) into a heap

AO.L Base address of the space to be linked in/back.
Relative to A6.
Al.L Pointer to a pointer to the free space list. Relative
to A6.
A6.L Base address of job.
Return Parameters

Register | Usage
DO.L Ignore, no errors are returned.
DIL Corrupted.
D2 Corrupted.
D3 Corrupted.
AQL Corrupted.
Al Corrupted.
A2 Corrupted.
A3 Corrupted.

Errors in DO
None — the trap call never fails.

Table 7.6: SMS.RCHP Parameters

sms.rehp equ $0d

; First, allocate a 64Kb common heap area:

start
moveq #sms.achp,d0 ; Trap code
move.l #65536,d1 ; 64Kb required
moveq #—1,d2 ; This job will be the owner
trap #l1 ; Allocate the space
tst.1l dO ; Did it work?
beq.s heapOk ; Yes

; Handle out of memory errors here.
rts ; Back to SuperBasic

; We have a common heap, convert it to a user heap

heapOk
moveq #sms.rehp ,d0 ; Trap code
suba.l a6, a0 : We need A0 to be A6 relative
lea myHeap,al ; Pointer to heap header
move.l 0,(al) ; Indicate this is a new heap
suba.l a6,al : This needs to be relative A6

trap #l1
bra.s useHeap

; That should do it (No errors)
; Go and use the heap space

myHeap
ds.1 1 ; Pointer to free space

Listing 7.2: User Heap Creation Example

7.2 User Heaps 51

Once we have an area of RAM set aside as a user heap, we can begin to use it. Listing 7.3 is an
example of allocating 200 bytes from the newly created user heap.

sms.alhp equ $0c

; Allocate space in the user heap.

useHeap
moveq #sms. alhp ,d0 ; Trap code
move.l #200,d1 ; I need 200 bytes of user heap
lea myHeap, a0 ; MyHeap = Free space pointer
suba.l a6, a0 ; Relative to A6
trap #l1 ; Allocate 200 bytes
tst.1l dO : Did 1t work?
bra.s doStuff : Go and use the allocation

; Handle out of user heap memory errors here
rts ; Back to SuperBasic

; Now we have allocated some user heap, use it somehow
doStuff

adda.1l a6, a0 ;. Absolute the address

Listing 7.3: User Heap Allocation

At this point, running via QMON2, I checked the allocated user heap space to see if the 8 byte
overhead was prior to the address returned in A0, as per the common heap; or at the returned address.
The overhead is indeed at the address pointed to by (A6,A0.L) on return and after “unrelativing”
the address, 0 (A0) holds the long word $000000C8 which is the length of the block, the long word
at 4(AO) is zero.

When we have finished using the 200 bytes, we can return it to the user heap, in case we need more
space at some other point in the code. This uses the same trap call which created the user heap in
the first place, but this time, the pointer to the free space, myHeap, will not be zero as it points to
the first free chunk of user heap.

freeUser
moveq #sms.rehp ,d0 ; Trap code
move.l #200,d1 ; Size is 200 bytes
suba.l a6, a0 : A0 has to be relative a6
lea myHeap,al ; Pointer to top of heap
suba.l a6,al ; Which has also to be relative A6
trap #l1 ; Deallocate the 200 byte area
rts ; Back to SuperBasic

Listing 7.4: User Heap Deallocation

You will note that I have hard coded the block size in register D1 for this trap call. This is one way
to do it especially if you only required a couple of chunks of user heap, keeping a note of the sizes
isn’t difficult in that case. However, if you are allocating lots of user heap space, or chunks of many
different sizes, what to do?

My advice would be, allocate space for 8 bytes plus what your code needs, and use the data from
8(A6,A0.L) onwards, and do not touch anything below that address. When you are done with the
space and about to free it, simply load D1 from 0(A6,A0.L) to get the block size, and Robert is
your mother’s brother. Obviously, if you have “unrelatived” the base address of the allocated space,
you would use the data from 8 (A0) and load D1 from (AO) prior to freeing the space again.

7.2.2

52 Chapter 7. Heaps

Once all the user heap space has been freed up and is no longer required, the chances are that your
application is about to exit. At this point, it could exit and automatically free up the 64 Kb chunk of
common heap, without any further work on the code’s part, or, the code could be nice and free it’s
own allocation with the SMS.RCHP trap call.

Relative Addresses

In the listings above, you will note that I add or subtract A6 from AO and A1 at various places in the
code. This is because when using these traps to manipulate user heap space, those registers have to
be relative to A6. It’s a bit of a faff and there are a couple of ways around this problem:

* Do as I have done, and add or subtract A6 as necessary, then address user heap areas using
offsets on (AO) as required.

* Do all your addressing as offsets on (A6,A0.L) as necessary, although this addressing mode
takes 2 extra clock cycles over just (A0)°;

* Zero A6 at the start of the code, and then the addresses will be both absolute and relative at
the same time, so you can use offsets on (AO) or (A6,A0.L) as you prefer;

» Use the appropriate vector calls rather than the trap calls, those use absolute addresses.
Speaking of which....

Vectors

There are a pair of vectored routines, MEM. ALHP and MEM. REHP, which are non-atomic’ versions
of the user heap trap calls. They take exactly the same parameters as the two trap calls, but do
not require A6 to be considered. Even better, there is no need to mess around keeping everything
relative to A6 as the two vectors don’t care about such necessities!

Converting the listings above to use vectors instead of traps, gives us the code in Listing 7.5.

sms.achp equ $18
mem.rehp equ $DA

; First, allocate a 64Kb common heap area:

start
moveq #sms.achp,d0 ; Trap code
move.l #65536,d1 ; 64Kb required
moveq #—1,d2 ; This job will be the owner
trap #l1 ; Allocate the space
tst.1 dO ; Did it work?
beq.s heapOk ; Yes

; Handle out of memory errors here.
rts ; Back to SuperBasic

; We have a common heap, convert it to a user heap

heapOk
move .w mem. rehp , a2 ; Vector
lea myHeap,al ; Pointer to pointer to free space
clr.1 (al) ; Initialise user heap
move.l #65536,d1 ; We have 64 Kb to play with
jsr (a2) ; Convert to a user heap
tst.1l dO ; Did it work

True, but each and every ADD or SUB of A6 to/from A0 or A1 will cost you 6 clock cycles, so there!
7In other words, the operation could get interrupted and the scheduler entered.

7.2 User Heaps 53

beq.s useHeap ; Yes
rts ; No
myHeap
ds.1 1 ; Pointer to free space

mem. alhp equ $DS8

; Allocate space in the user heap.

useHeap
move.l #200+8,d1 ; I need 200 bytes of user heap
lea myHeap, a0 ; MyHeap = Free space pointer
move.w mem. alhp , a2 ; Vector
jsr (a2) ; Get some user heap
tst.1 dO ; Did it work?
bra.s doStuff : Yes
rts ; No

; Now we have allocated some user heap, use it somehow
doStuff
move.l #$12345678 ,8(a0) ; Avoid writing the header bytes

; Now deallocate the user heap space.

freeUser
lea myHeap,al ; Pointer to pointer to free space
move .w mem.rehp ,a2 ; Vector
move.l (a0),dl ; Block length to free up
jsr (a2) ; Free the space
rts ; Back to SuperBASIC

Listing 7.5: User Heap Vectors Example

If you trace the code using QMON?2® then you will see that when you arrive at the label doStuff,
the base address of the user heap allocated at (A0), holds the length of the block, which is 208 or
$DO°.

Freeing User Heap Space Quickly

If you have, for example, some deeply recursive code which allocates space in the user heap, how
do you cope with an error whereby you have to free up all the allocated bits that were ok until
the problem arrived? I’m thinking perhaps of an expression evaluator as a specific example, but
it could be a parser or a compiler building a symbol table or parse tree etc. I'm also thinking of
the problem where the code doesn’t just give up, but informs the user — expression too complex or
invalid operation etc — but then loops back to the prompt for more input.

If, in the case of the expression evaluator, the code will have allocated lots of chunks of user heap
to build the expression tree'” then those nodes in the tree need to be deallocated before the next
expression can be evaluated, otherwise, at some point, the user heap space will be full of nodes that
are no longer required, but are hogging all the space.

8Other monitors are available....

9 And that value confused me as QMON listed the instruction to load D1 as MOVE.L #$D0,D1 and I was initially
confused as I didn’t have an instruction to move DO into D1. Then I read the screen a little bit better and understood!

10Usually an Abstract Syntax Tree or AST.

54 Chapter 7. Heaps

The easiest manner of deallocating all allocated space in the user heap is simply to clear the pointer
to the free space to zero, then call the SMS.REHP trap or the MEM.REHP vector and link the entire
user heap to free space again. Something similar to Listing 7.6.

start
bsr getCommonHeap ; Allocate heap space or die
bra.s mainLoop ; Skip to main loop
userHeap
de.1 1

; On first entry:

; Link the allocated space in the common heap into a user heap.
; On subsequent entries:

; Wipe everything from the user heap.

mainLoop
lea myHeap,al ; Pointer to pointer to free space
clr.1 (al) ; Initialise user heap
move.w mem. rehp ,a2 ;. Vector
move.l #heapSize ,dl ; Size of user heap
jsr (a2) ; Convert/wipe user heap
tst.1 dO ; Did it work
beq.s useHeap : Yes
rts ; No, exit with error code

: None of these will return if an error occurs. The errors
; will be handled below, the stack unwound and any user
; heap allocations freed.

bsr getUserlnput ; Get next expression or exit
bsr lexer ; Build token list
bsr parser : Build AST
bsr evaluate ; Evaluate the expression
bra.s mainLoop ; Keep going
lexError
bsr doLexError ; Handle lexer errors
bra.s mainLoop ; And go again
parseError
bsr doParseError ; Handle parser errors
bra.s mainLoop ; And go again
EvalError
bsr overflow : Check/Handle overflow
bsr divZero ; Check/handle divide by zero
bsr Etc
bra.s mainLoop ; And go again

Listing 7.6: User Heap Total Deallocation

On the first entry to mainLoop, the common heap allocation is linked into the user heap’s free
space, the whole allocation is free for use as a user heap. On subsequent passes through mainLoop,
the user heap is effectively reinitialised, thus freeing up every piece of allocated space which was

7.2 User Heaps 55

allocated before the code went into error recovery.

Not shown in the example code above is the handling of the A7 stack, which needs to be preserved
at the start of the mainLoop and reset after each and every error so that it is correctly set each time
we pass by the mainLoop address.

Can you tell I'm writing an expression evaluator then?

Pl S g oly, N
?‘.:{ P 'ﬁ."'." T
e 7 el g

There’s a thread on the QL. Forum' about how difficult it might be to write programs in S*BASIC
on SMSQ/E. There is a pile of useful information there. One of the more interesting comments was
about a hardware timer to get proper delays in code, but this required the use of PEEK_L. And, as
we all know, PEEK_L returns a float, and is signed.

I responded on this post”> with an example of some code to get around that problem by adding 23!
if the result was negative. Sadly, in my posting, I actually typed 23>~ Duh!

Marcel responded that someone could do a PEEK_UL function to get an unsigned result. This caused
confusion for a bit as nobody knew that PEEK_UL existed and when they tried, it was, of course, not
found. Marcel may have been hinting that someone could easily write an unsigned version of the
PEEK_L (and PEEK_W) functions. So 1 did! And here they is.

You’d think there was nothing to it really, and there isn’t, but along the way to producing this code,
I had to delve into some old code of mine® to convert a long value to a floating point value on the
maths stack. For the life of me, I couldn’t remember how I did it, so I fell down that rabbit hole
until I had a vague understanding of QL Floating Point and the conversion code.

SMSQ/E has a maths package operation to convert a long value on the maths stack into a float,
however, QDOS doesn’t have this option — it’s interestingly missing from the maths package op
code — so there are two versions of the source code and binary files on the accompanying code
download for this issue.

The SMSQV/E version is 230 bytes while the QDOS version is longer, at 258. The QDOS version is,
however, safe to run on SMSQ/E as well. Just don’t try running the SMSQ/E version on QDOS —1
have no idea what will happen.

Thttps://qlforum.co.uk/viewtopic.php?f=3&t=4027&sid=7a218630d06b1d78c6bb436e1fbf32f9
Zhttps://qlforum.co.uk/viewtopic.php?f=38&t=4027&p=45290#p45290
3Well, it’s either mine or [stole it from somewhere, I can’t remember that far back!

https://qlforum.co.uk/viewtopic.php?f=3&t=4027&sid=7a218630d06b1d78c6bb436e1fbf32f9
https://qlforum.co.uk/viewtopic.php?f=3&t=4027&p=45290#p45290

8.1

58 Chapter 8. Unsigned Peeks

PEEK_UW and PEEK_UL

PEEK_W and PEEK_L on the QL are signed. They return positive and negative values. This
is sometimes a bit of a pain because, taking PEEK_L as an example, fetching any value over
$7FFFFFFF or 2,147,483,647, will result in the value going negative. This may not be what you
desire. The solution is easy, add 2!° or 23!, depending on whether you are peeking for words or
longs, to the result on return to S¥*BASIC. Sometimes you forget, well, I do, and so, these two new
functions will do the testing and adding for us, leaving S*BASIC to get on with interpreting the
rest of the code.

Listing 8.1 is the start of the source code, and shows the various equates I’ve used in the code.
These are, as mentioned in the News Section, now using the SMSQ/E mnemonics, don’t worry if
you are using QDOS as it’s the values that count — I could have called them Fred, Barney Wilma,

Betty etc, but that’s not a meaningful set of names®.

sb_arthp equ $58 ; Where is top of maths stack
sb.inipr equ $110 ; Add procs/fns to SxBASIC
sb.gtlin equ $118 ; Fetch long int parameters
qa.resri equ $1la ; Reserve maths stack space
ga.op equ $llc ; Do one maths stack operation
qa.flong equ $09 ; Convert long to float (SMSQ)
qa.add equ $0a ; Add TOS to NOS on maths stack
err.ipar equ —15 ; Bad parameter error code
exp231 equ $0820 ; 2731 exponent

exp215 equ $0810 ; 2715 exponent

mantBoth equ $40000000 ;0 2731 & 2715 mantissa

peek_w equ exp215 ; Flag for peek_uw

peek_1 equ exp231 ; Flag for peek_ul

Listing 8.1: Unsigned Peeks - Equates

The only thing I'd draw your attention to is the two flags I've set up to determine if we are peeking
words or longs, those being peek_w and peek_1. I've given those a value which just happens to
correspond to the exponent for a floating point value of either 2! or 23! — this is a cunning plan to
save me some work later on!

The code proper begins at the label start, which you can see in Listing 8.2 where we have the
standard code to link in new procedures and/or functions, and the requisite definition block in
Listing 8.3 where we are defining no new procedures, only two new functions, PEEK_UL and
PEEK_UW.

start
lea define ,al : Proc/FN definition list
move.w sb.inipr ,a2 ; Ready to add to S%BASIC
jsr (a2) ; Do it
rts ; Take errors back to S#*BASIC
Listing 8.2: Unsigned Peeks - Linking into S*BASIC
define
dc.w O ; No procedures

4Unless we are writing a Flintstones application I suppose.

8.1 PEEK_UW and PEEK_UL 59

dc.w O ; End of procedure list
dc.w 2 ; 2 Functions
dc.w peek_ul—:x : Offset to function
dc.b 7,’PEEK UL’ : The function name
dc.w peek_uw—:x ; Offset to function
dc.b 7,’PEEK UW’ ; The function name
dc.w 0O ; End of functions

Listing 8.3: Unsigned Peeks - Procedure/Function definition block

Both new functions share a lot of common code. To this end, I set a flag to determine which is being
called so that the places where things differ, can easily tell the functions apart. PEEK_W begins, as
Listing 8.4 shows, by setting the correct flag in D4 . W, before jumping off to join the first section of
common code.

peek_uw
move.w #peek_w ,d4 ; Flag for peek_uw
bra.s peekBoth ; Off we go then!

Listing 8.4: Unsigned Peeks - Peek_uw

Listing 8.5 is the beginning of the PEEK_UL function. It also sets a flag before dropping into the
common code for both functions.

peek_ul
move.w #peek_1,d4 ; Flag for peek_ul
peekBoth
move.l a5,do0 ; First parameter
sub.1 a3,do ; Last parameter
cmpi.l #8,d0 ; 8 bytes per parameter
beq.s pulGetParam ; We have one parameter to get
pulBadParam
moveq #err.ipar ,dO ; That didn’t go well then!
rts ;. Back to S*BASIC

Listing 8.5: Unsigned Peeks - Peek_ul

Both functions require a single parameter, so we subtract A3.L from A5.L and if the result is not 8
bytes, then we exit back to S¥*BASIC with a bad parameter error. A3.L points to the last function
parameter on the name table, and A5.L to the first. Each name table entry takes 8 bytes.

If we do have 8 bytes of a difference, then we know that there’s exactly one parameter waiting, so
we can go fetch it. Listing 8.6 shows the code to fetch the address parameter as a long value.

pulGetParam
movea.w sb.gtlin ,a2 ; We want a long integer
jsr (a2) ; Go fetch
beq.s pulTestOne ; No problems detected
rts ;. Back to S*BASIC with error

Listing 8.6: Unsigned Peeks - Fetching one parameter

When fetching parameters for a procedure or function, D3.W holds the count of parameters actually
fetched. Just as an extra check, we test this, in Listing 8.7, to make sure that we did indeed only
fetch a single parameter.

60 Chapter 8. Unsigned Peeks

pulTestOne
cmpi.w #1,d3 ; Make sure we got one only
bne.s pulBadParam ; Weirdness has happened!

Listing 8.7: Unsigned Peeks - Testing parameters fetched

If we somehow managed to fetch more, or less, than one parameter, we bale out to S¥*BASIC with
a bad parameter error. If not, then we continue to pull the passed address off of the maths stack into
A2 .L and then we ‘peek’ the long value at the requested address into D7 . L as per Listing 8.8

pulGotParam
move.l (a6,al.l),a2 : Get the address into a2.
move.l (a2),d7 ; Peek the address

Listing 8.8: Unsigned Peeks - Getting the address, and peeking it

At t his point, we have pretty much executed a PEEK_L function call, but we might want only the
first word if we are executing PEEK_UW. If so, we need to return only the current high word of D7 . L,
so Listing ? is the code that does the check. If we are indeed running PEEK_UW, then the low word
is cleared and then the upper word is swapped into the lower word, giving the correct value in D7 .L
for PEEK_UW.

pulWord
cmpi.w #peek_w,d4 ; Are we looking for a word?
bne.s pulGotPeek ; No, continue
clr.w d7 : We don’t need the bottom word
swap d7 ; Correct word for peek_uw
pulGotPeek equ = ; It’s just a label for both

Listing 8.9: Unsigned Peeks - Fixup for PEEK_UW

Both functions come together again at label pulGotPeek, where D7 .L holds the possibly negative
value we need to return to S*BASIC. Unfortunately, this is also exactly where they diverge again,
however, I’'m only discussing the SMSQ/E version here. I've explained converting a long word into
floating point the end of this chapter, if you are interested?

The differences are these:

* SMSQV/E has a maths package operation, OP . FLONG, to take the long word on the top of the
maths stack, and convert it to a floating point value at TOS, adjusting A1.L as necessary
(subtracting 2 from it — the difference between a 6 byte float and a 4 byte long)

* QDOS requires the developer, me, to allocate an additional 2 bytes on the maths stack. There
is already 4 bytes available as we pulled the address parameter as a long word, which takes 4
bytes.

* It the space allocation succeeds then we can convert, manually, and normalise the long word
in D7.L into a float and stack it.

 In the QDOS variant, the developer, me again, has to be very careful to keep the TOS pointer
in Al correct at all times.

Listing 8.10 is the simple way that SMSQ/E converts a long word to a floating point value.

pulFloatD7SMSQ
move.l d7,(a6,al.l) ;. Stack D7.L
move.l #qa.flong ,dO ; Float a long operation code
bsr.s pulDoMathsOp ; Do it

beq.s pulTestNegative ; All was well

8.1 PEEK_UW and PEEK_UL 61

l rts ;. Take errors back to S#*BASIC
Listing 8.10: Unsigned Peeks - Floating a Long SMSQ/E style

We need to stack the value in D7.L so we can do that easily as we know that there are 4 bytes
available on the maths stack, and that A1.L is still correctly pointing at the TOS where we need our
long word to be. As with almost everything S*BASIC, addresses are relative to A6.

After stacking D7.L, we simply call a subroutine, pulDoMathsOp, which can be seen later in
Listing 8.15, to do the hard work of converting the value. If that worked, then we skip off to
pulTestNegative, where we join up with the code for QDOS again.

pulTestNegative
btst #7,2(a6,al.l) ; Mantissa bit 31
beq.s pulValuePositive ; It’s positive , skip

Listing 8.11: Unsigned Peeks - Testing for negativity

Listing 8.11 checks the byte at the high end of the mantissa for the floating point value on the maths
stack. Bit 31 of the mantissa is the sign bit and that corresponds to bit 7 in this particular byte. If the
bit is clear, then we have a positive number as there’s no need to do the addition to make it positive.

If the bit is set, then the value is negative, and we need to add 2! or 23! depending on the function
currently executing. Listing 8.12 shows how I decided to do it.

pulValueNegative
moveq #6,dl1 ; Need space for a float
bsr.s pulGetSpace ; Reserve space, sets Al
move.w d4 ,(a6,al.l) ; Stack 272D4 exponent
move.l #mantBoth,2(a6,al.1) ; Stack common mantissa
move .l #qa.add,dO ; Add TOS to NOS operation code
bsr.s pulDoMathsOp ; Do it
beq.s pulValuePositive ; All was well
rts ;. Take errors back to S#*BASIC

Listing 8.12: Unsigned Peeks - Adjusting for negativity

The first thing we have to do is request 6 bytes, enough room for a new floating point value, on the
maths stack. This is done by a subroutine, pulGetSpace in Listing 8.14 which will make sure that
the space is allocated and adjusts A1.L as necessary.

We can now stack the floating point representation of 2! or 23! appropriately. Remember that flag
used to determine whether we were in PEEK_UW or PEEK_UL? Well, that value just happens to be the
exponent for 2!° or 23'and so we can stack the exponent directly from the flag register, D4 .W. The
mantissa for both values is the same, so that gets stacked next. We now have (A6,A1.L) pointing
at 215 or 23! on TOS, and the peek value at Next On Stack, NOS. We need to add them together.

SMSQ/E and QDOS both have the same maths package operation to add two floats, QA . ADD. This
has the side effect of replacing NOS with the result of the addition and removes TOS making the
existing NOS the new TOS. A1.L is now 6 larger than previously, and we need this to be saved
away. The subroutine pulDoMaths0p, in Listing 8.15 does this for us.

The value at TOS is now guaranteed to be positive, so we can carry on and return the result to
S*BASIC. Listing 8.13 is how we do that.

pulValuePositive
moveq #2,d4 ; Return is floating point
moveq #0,d0 ; No errors

62 Chapter 8. Unsigned Peeks

| rts . Done

Listing 8.13: Unsigned Peeks - Return to S*BASIC

D4 .W is set to 2 to indicate a float result is on the maths stack at TOS and we return with no errors.

That’s basically all there is to it! Except for a couple of small subroutines. Listing 8.14 is the
subroutine pulGetSpace which requests space for the maths stack and keeps the various pointers
correctly aligned.

pulGetSpace
move.1l dl,—(a7) ; Save space required
move.l al,sb_arthp (a6) : Store current TOS
move.w qga.resri ,a2 ; Allocate maths stack space
jsr (a2) ; Do it — never errors
move.l sb_arthp(a6),al ; Fetch possible new Al value

move.l (a7)+,dl ; Retrieve space requested
sub.1 dl,al ; Adjust space as required
move.l al,sb_arthp (a6) ; And store new TOS

rts

Listing 8.14: Unsigned Peeks - Allocating maths stack space

The code expects D1.L to contain the number of bytes needed and A1.L to point at the maths stack
TOS, relative to A6.L. The QA.RESRI vector code trashes registers D2, D3, A1 and A2, but we have
to reload A1.L from SB_ARTHP anyway, so that’s no matter.

The subroutine requests D1 .L bytes of space, then retrieves the potentially new value for A1.L from
SB_ARTHP before subtracting D1.L to get the new TOS. This value is saved back in SB_ARTHP as it
must be.

On exit, A1.L is the new TOS pointer, ready for use by our code.

Listing 8.15 is the final subroutine. This one, pulDoMathsQOp, executes a single maths package
operation according to the code in DO . W.

pulDoMathsOp

move.w qa.op,a2 ; Do 1 maths operation

jsr (a2) ; Do the conversion

beq.s pulFixup ; No errors, adjust SB_ARTHP

rts ; Errors go back to caller
pulFixup

move.l al,sb_arthp (a6) ; Save new TOS pointer

moveq #0,d0 : No errors

rts

Listing 8.15: Unsigned Peeks - Execute maths package operation

The subroutine expects an operation code, as a word, in DO.W and executes it. If all went well,
then the TOS might have changed, so to keep things right, the potential new TOS is pulled from
SB_ARTHP back into A1 .L before setting no errors in D0, and returning to the caller.

If errors were detected, the code makes an early exit back to the caller with DO set to the error code,
and the Z flag unset.

8.1 PEEK_UW and PEEK_UL 63

QDOS Conversion of Long to Float

AS mentioned above, QDOS requires manual intervention to convert a long word into a floating
point value. We already have room for a long word, but we need an additional two bytes for a float,
so first of all, we have to request two extra bytes. Listing ? shows how we do this by setting D1.L
to 2, and calling the pulGetSpace subroutine, in Listing ?, to do the hard work of getting the space
and keeping the pointers aligned. On return, A1.L is set ready for us to use to stack a 6 byte float
value.

pulMakeSpace
moveq #2,dl ; 2 extra bytes required
bsr.s pulGetSpace ; Reserve space, sets Al to TOS

Listing 8.16: Unsigned Peeks - QDOS Making stack space

Unfortunately, QDOS is bereft in the maths package operations to convert a long word to a float, so
we have to do it manually. Listing 8.17 does the hard work for us. At the end, we should have the
exponent value in register D5.W and the mantissa in register D6 . L.

pulFloatD7QDOS

move.w d7,d5 ; Exponent

move.l d7,d6 ;. Mantissa

beq.s pulNormalised ; We are done if D7.L = zero

move.w #$081f ,d5 ; Starting exponent value

add.1 d7,d7 ; Already normalised?

bvs.s pulNormalised ; Yes

subq.w #1,d5 ; No, halve the exponent

move.l d7,d6 ;. Mantissa % 2

moveq #$10,d0 ;: Start with a 16 bit shift
pulNormalise

move.l d6,d7 ; Copy the mantissa

asl.1 d0,d7 ; Multiply by 22DO0O

bvs.s pulTooBig ; Oops, too big now

sub.w dO,d5 ; Adjust exponent for the shift

move.l d7,d6 ; Getting more normalised now
pulTooBig

asr.w #1,d0 : Halve the shift size

bne.s pulNormalise : Do 8, 4, 2, 1 shifts
pulNormalised

move.w d5,(a6,al.l) ; Stack exponent

move.l d6,2(a6,al. 1) ;: Stack mantissa

Listing 8.17: Unsigned Peeks - QDOS Converting Long to Float

How does it work? I was hoping you wouldn’t ask!

QL Floating Point Values

The QL’s internal floating point format is a 2 byte exponent and a 4 byte mantissa. What are they?
Well, if you have a number such as 1.23 x 10° then the mantissa is the 1.23 and the exponent is 3
and the number is "normalised" when the mantissa is "n.something". Zero is a special case.

1.23 x 103 could easily be written as 12.3 x 10% or 123 x 10 they all result in 1,230. A properly

64 Chapter 8. Unsigned Peeks

normalised number, in this notation, is a single digit prior to the decimal point, so 1.23 x 103 is the
correct value.

The exponent is the power of 10 that the mantissa is to be multiplied by, to get the actual® value, in
other words, the value is:

mantissa x 10¢porent

The same is true in binary but there the value is mantissa * 2¢*P°"¢" as we are working in base 2,
not base 10.

In SMSQ/E, the mantissa is normalised when bit 31 or bit 30 of the mantissa is set. Bit 31 will
be set if the number is negative, and bit 30 if positive. The exponent only has the bottom 12 bits
available as the top nibble is used to determine if this is a decimal float value, a binary float value
or a hexadecimal float value.

12 bits is 2,048. $800 in hexadecimal, so the exponent has 12 bits of precision. However, it is offset
by $800, so the range is from 272048 to 22047 which is from 3.094!7 to 1.616%!6 which is a decent
enough range. Because the exponent is offset, this makes the floating point value equal to:

mantissa * 26xp0nent—$800

Zero is a special case where the exponent and mantissa are both zero.

The bits in the mantissa represent fractions, but in power’s of 2. They can be thought of as ﬁ

but , as with many things mathematical, this can also be expressed as 2~(3!1=%#)_ The fractional

parts of the mantissa start with bit 30, the most significant bit, which represents 2—11, 2-1or 0.5,

down to bit 0, representing 2%, 2731 or not very much at all!®
A couple of examples:

* 10.0 is represented as $0804 50000000
* -10.0 is represented by $07FC D0000000

Taking 10 first.

The mantissa is %0101 0000 0000 0000 0000 0000 0000 0000 so we are only interested in the
%0101 bits, the trailing zeros can be ignored.

The sign bit is zero, so the number is positive. So far so good. Bit 30, which represents 0.5 is set, as
is bit 28 which represents 0.125, the mantissa is therefore the addition of these fractions. The result
is 0.625.

The exponent is $0804, subtracting $0800 we get $04, so 10 is 0.625 multiplied by 2% or 16. 10 is
indeed equal to 0.625 times 16.

Negative 10 next.

The mantissa is %1101 0000 0000 0000 0000 0000 0000 0000 and again, we can ignore all the
trailing zero, keeping only %1101.

SWatch out for errors though, floating point is notorious for errors. Many floating point values cannot be represented
exactly. One third for example.
seo 1 . .
60k, ok, it’s 2TATASI 608 which is pretty small.

8.1 PEEK_UW and PEEK_UL 65

Bit 31 is 1 so we are dealing with a negative number.

Bits 30, 0.5, and 28, 0.125, are both set, so we have a value again, of 0.625. Subtracting $800 from
$7FC results in $FFEC or -4, and 0.625 times 2 is -10.

If we assume D7.L is zero, then we have the easy case where we move it into D5.W and D6.L, it
will set the Z flag and we are ready to stack the value.

If we take D7 as having the value $1E240 which is 123,456 in decimal. We start off by setting up
the various registers, D5 gets a copy of the low word, D6 the whole $1E240. Because we are not
dealing with zero, we drop down to set D5 to the first guess exponent, $081F, and adding D7 to
itself which results in D7 = $3C480. This didn’t overflow, so we still have a valid mantissa which is
twice as big as it was.

As we have now doubled the mantissa, we must also halve the exponent, which means subtracting 1
from D5 to get $O81E.

The new mantissa is copied into D6 where we will keep it for those occasions when shifting it by
DO bits results in overflow. DO is initialised to $10 — we will attempt a 16 bit shift first of all.

We could shift by a single bit each time, and halve the exponent each time there’s no overflow, but
this method is quicker. If D7 can be shifted 16 bits left, then that that’s one shift, not 167.

We are now at label pulNormalise for the first time, and here we enter the normalisation loop. We
will multiply D7 by "lots of bits" each time as long as we don’t get overflow. If we do hit overflow,
we have gone too far and need to back up a bit, and multiply by half as many "lots of bits".

We copy the most recent valid mantissa from D6 to D7 ready to try again, and shift it left by the $10
bits held in DO. This caused overflow as D7 was holding $3C480, which is %0000 0000 0000 0011
in the high word, so there were only 14 bits we could have shifted. As V was set, we skip to the
label pulTooBig where we adjust DO from $10 to $08 and skip back to pulNormalise again.

On the second pass through the loop, we copy the last valid mantissa back into D7, and attempt
to shift by 8 bits. This results in D7 now holding the value $3C48000 but this time, there was no
overflow. As this was a successful multiplication of the mantissa, we subtract the correct powers of
two from the exponent, which happens to be DO’s value, 8. Finally, we copy the new valid mantissa
into D6, just in case, and drop into pulTooBig to divide DO down to 4, ready for another attempt.

On the third pass, we again copy the most recent valid mantissa back to D7, and multiply by 4 bits.
This gives a result of $3C480000 in D7 and no still overflow, so we have a new valid mantissa. The
exponent is adjusted by the correct powers of two and the new mantissa is copied to a safe place in
D6 before DO is again divided down to 2 at label pulTooBig.

The fourth pass through the loop multiplies D7 up to $F1200000 but causes overflow, we have to
skip to pulTooBig to drop DO down to 1 for another attempt.

The fifth pass through the loop shifts D7 to get a result for the mantissa of $78900000 with no
overflow. As before, the exponent is divided to cater for the multiplication, and the new mantissa
is copied to D6 for safety. At label pulTooBig, DO is divided down but is now zero. We are now
holding a normalised mantissa in D7. The loop is finished and we drop to the label pulNormalised.

Remember when we calculated that only had 14 bits to shift to normalise D7, and shifting by 16
caused overflow? Add up all the successful shifts, 8 +4 + 1, then add one more for the initial
doubling of D7, and you get 14.

Table 8.1 shows each pass and the various values as a summary.

7I have a funny feeling this code is something from Simon N. Goodwin!

66 Chapter 8. Unsigned Peeks

] Pass \ D7 Input \ DS Input \ Shifts \ Overflow \ D7 Output \ D5 Output ‘

Start | $0001 E240 $81F - - - -
Init | $0001 E240 $81F 1# No $0003 C480 $81E
1 $0003 C480 $81E 16 Yes - $81E
2 $0003 C480 $81E 8 No $03C4 8000 $816
$03C4 8000 $816 4 No $3C48 0000 $812
$3C48 0000 $812 2 Yes - $812
1
0

| KW

$3C48 0000 $812 No $7890 0000 $811
End | $7890 0000 $811 - - -

Table 8.1: Floating point conversion of 123456

At this point, the exponent is $0811 and the mantissa is $78900000. Is this correct? We can convert
the exponent to the correct powers of two by subtracting $800 to get $11, or 17 in decimal.

The mantissa, $78900000, is %0111 1000 1001 0000 0000 0000 0000 0000 but as we can safely
ignore the trailing zeros, we have %0111 1000 1001 in the highest three nibbles. (Bits 31 - 20.)

The sign bit, bit 31, is a zero, so the mantissa is positive.

Bits 30, 29, 28, 27, 23 and 20 are set, but we need to subtract those from 31 to get bits 1,2,3,4,8
and 11 for out fractional powers of two. The mantissa is a fraction, in the format of 0.something,
remember?

The bit values represent the powers of two that we take the reciprocal of and add them up, to get
the actual fractional value for the mantissa. This sum is % + % + % + % + % + ﬁ which works
out as % + % + % + % + ﬁ + ﬁ and converting that to decimal fractions, not those nasty vulgar’
ones, we get 0.540.25+0.125+0.0625 + 0.003,906, 25 +0.000,488,281, giving a mantissa of
0.941,894,531.

We can now work out the value as 0.941,894,531 % 2!7which, funnily enough, is 123,456, 2!7
being 131,072.

How easy was that then?

81t was an addition, but that’s equivalent to a shift.
9Fractions in the format 2in the UK at least, are called vulgar fractions.

e PO A
¥ P AN S e s X0

Pty L L% ™ &
£ AL W f -,,d-{"ﬁ. ey

@
-

The front cover image on this ePeriodical is taken from the book Kunstformen der Natur by German
biologist Ernst Haeckel. The book was published between 1899 and 1904. The image used is of
various Decapods. The Decapoda or decapods (literally "ten-footed") are an order of crustaceans
within the class Malacostraca, including many familiar groups, such as crabs, lobsters, crayfish,
shrimp and prawns. Most decapods are scavengers. The order is estimated to contain nearly 15,000
species in around 2,700 genera, with around 3,300 fossil species.

I have also cropped the cover image for use on each chapter heading page.

You can read about Decapods on Wikipedia and there is a brief overview of the above book, also
on Wikipedia, which shows a number of other images taken from the book. (Some of which I
considered before choosing the current one!)

Decapods have absolutely nothing to do with the QL or computing in general - in fact, I suspect
many of them died out before electricity was invented, and the rest probably don’t care about
electricity or computers! However, I liked the image, and decided that it would make a good cover
for the book and a decent enough chapter heading image too.

Not that I am suggesting, in any way whatsoever, that we QL fans are 10 legged crustaceans.

https://en.wikipedia.org/wiki/Decapoda
https://en.wikipedia.org/wiki/Kunstformen_der_Natur

	1 Preface
	1.1 Feedback
	1.2 Subscribing to The Mailing List
	1.3 Contacting The Mailing List

	2 News
	2.1 New Cover
	2.2 My Assembly Book
	2.3 Beginner's Corner
	2.4 SMSQ/E
	2.4.1 SMSQ/E 3.38

	2.5 QPC2 Version 5.01
	2.6 Code Listings
	2.7 And Finally...

	3 Feedback
	3.1 Circular Buffers
	3.2 Learning Assembly Language
	3.3 Wolfgang's Feedback on Label Alignment
	3.4 Wolfgang's Comments on Ql2Win_asm
	3.5 Bug Fixes for Ql2Win/Win2ql
	3.5.1 Ql2Win
	3.5.2 Win2ql

	4 Beginners' Corner
	4.1 Introduction
	4.2 Do Basic Things
	4.2.1 Program Constants
	4.2.2 Job Header
	4.2.3 Opening a Console Channel
	4.2.4 Do We Have the Pointer Environment?
	4.2.5 Pointer Environment Found
	4.2.6 Clear Screen
	4.2.7 Print a Prompt
	4.2.8 Enable the Cursor
	4.2.9 Get Some Input
	4.2.10 Printing the Text
	4.2.11 Hang on a Few Seconds!
	4.2.12 Death of a Job
	4.2.13 Error Codes

	4.3 Assembling the Code
	4.4 Summary

	5 Quickie Corner
	5.1 Speedy Stuff

	6 Free Pascal Compiler
	6.1 Writing Code
	6.1.1 Parameter Passing

	6.2 Join In If You Can

	7 Heaps
	7.1 Common Heap
	7.1.1 Traps
	7.1.2 Vectors

	7.2 User Heaps
	7.2.1 Traps
	7.2.2 Vectors

	8 Unsigned Peeks
	8.1 PEEK_UW and PEEK_UL
	8.1.1 QDOS Conversion of Long to Float
	8.1.2 QL Floating Point Values

	9 Image Credits

